①数列的公差 ②一定小于 查看更多

 

题目列表(包括答案和解析)

在等差数列{an}中,a4S4=-14,S5-a5=-14,其中Sn是数列{an}的前n项之和,曲线Cn的方程是
x2
|an|
+
y2
4
=1,直线l的方程是y=x+3.
(1)求数列{an}的通项公式;   
(2)判断Cn与l的位置关系;
(3)当直线l与曲线Cn相交于不同的两点An,Bn时,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)对于直线l和直线外的一点P,用“l上的点与点P距离的最小值”定义点P到直线l的距离与原有的点到直线距离的概念是等价的.若曲线Cn与直线l不相交,试以类似的方式给出一条曲线Cn与直线l间“距离”的定义,并依照给出的定义,在Cn中自行选定一个椭圆,求出该椭圆与直线l的“距离”.

查看答案和解析>>

在等差数列{an}中,a4S4=-14,S5-a5=-14,其中Sn是数列{an}的前n项之和,曲线Cn的方程是+=1,直线l的方程是y=x+3.
(1)求数列{an}的通项公式;   
(2)判断Cn与l的位置关系;
(3)当直线l与曲线Cn相交于不同的两点An,Bn时,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)对于直线l和直线外的一点P,用“l上的点与点P距离的最小值”定义点P到直线l的距离与原有的点到直线距离的概念是等价的.若曲线Cn与直线l不相交,试以类似的方式给出一条曲线Cn与直线l间“距离”的定义,并依照给出的定义,在Cn中自行选定一个椭圆,求出该椭圆与直线l的“距离”.

查看答案和解析>>

6、等差数列{an}的公差d不为0,Sn是其前n项和,给出下列命题:
①若d<0,且S3=S8,则S5和S6都是{Sn}中的最大项;
②给定n,对于一切k∈N*(k<n),都有an-k+an+k=2an
③若d>0,则{Sn}中一定有最小的项;
④存在k∈N*,使ak-ak+1和ak-ak-1同号.
其中正确命题的个数为(  )

查看答案和解析>>

等差数列{an}的公差d不为0,Sn是其前n项和,给出下列命题:

①若d<0,且S3=S8,则S5和S6都是{Sn}中的最大项;

②给定n,对于一切,都有

③若d>0,则{Sn}中一定有最小的项;

④存在,使同号。

其中正确命题的个数为

A.4                B.3                C.2                D.1

 

查看答案和解析>>

等差数列{an}的公差d不为0,Sn是其前n项和,给出下列命题:
①若d<0,且S3=S8,则S5和S6都是{Sn}中的最大项;
②给定n,对于一切k∈N*(k<n),都有an-k+an+k=2an
③若d>0,则{Sn}中一定有最小的项;
④存在k∈N*,使ak-ak+1和ak-ak-1同号.
其中正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

一、选择题

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B

B

A

B

D

B

C

C

A

B

C

A

C

D

C

 

二、填空题

16.;17.;18等边三角形;19.3;20.①②④

三、解答题

21解(I)由题意及正弦定理,得  ①,

  ②,………………1分

两式相减,得.  …………………2分

(II)由的面积,得,……4分

由余弦定理,得                            ……………5分

所以. …………6分

22 .解:(Ⅰ)      ……2分

(Ⅱ)   

∴数列从第10项开始小于0                ……4分

(Ⅲ)

23解:(Ⅰ)由

即:

…………2分

…………4分

(Ⅱ)利用余弦定理可解得: 

      ,∵,故有…………7分

24解:(I)设等比数列{an}的公比为q, 则q≠0, a2= = , a4=a3q=2q

  所以 + 2q= ,     解得q1= , q2= 3,            …………1分

  当q1=, a1=18.所以 an=18×( )n-1= = 2×33-n.

  当q=3时, a1= ,所以an=×=2×3n-5.         …………3分

(II)由(I)及数列公比大于,得q=3,an=2×3n-5 ,…………4分

    

(常数),  

所以数列为首项为-4,公差为1的等差数列,……6分  

.     …………7分

25.解:(Ⅰ)  n=1时      ∴

n=2时         ∴

n=3时     ∴       …………2分

(Ⅱ)∵   ∴

两式相减得:   即

也即

    ∴  即是首项为2,公差为4的等差数列

          …………5分

(Ⅲ)

   …………7分

对所有都成立   ∴  即

故m的最小值是10       …………8分

 

 


同步练习册答案