题目列表(包括答案和解析)
如图,在三棱柱
中,
侧面
,
为棱
上异于
的一点,
,已知
,求:
(Ⅰ)异面直线
与
的距离;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
解:(I)以B为原点,
、
分别为Y,Z轴建立空间直角坐标系.由于,![]()
![]()
在三棱柱
中有
,
设![]()
![]()
![]()
又
侧面
,故
. 因此
是异面直线
的公垂线,则
,故异面直线
的距离为1.
(II)由已知有
故二面角
的平面角
的大小为向量
与
的夹角.
![]()
如图,四棱锥P-ABCD中,底面ABCD为菱形,PA
底面ABCD,AC=
,PA=2,E是PC上的一点,PE=2EC。
![]()
(I)
证明PC
平面BED;
(II) 设二面角A-PB-C为90°,求PD与平面PBC所成角的大小
【解析】本试题主要是考查了四棱锥中关于线面垂直的证明以及线面角的求解的运用。
从题中的线面垂直以及边长和特殊的菱形入手得到相应的垂直关系和长度,并加以证明和求解。
解法一:因为底面ABCD为菱形,所以BD
AC,又
![]()
![]()
![]()
![]()
【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题和相似,底面也是特殊的菱形,一个侧面垂直于底面的四棱锥问题,那么创新的地方就是点E的位置的选择是一般的三等分点,这样的解决对于学生来说就是比较有点难度的,因此最好使用空间直角坐标系解决该问题为好。
如图
是单位圆
上的点,
分别是圆
与
轴的两交点,
为正三角形.
![]()
(1)若
点坐标为
,求
的值;
(2)若
,四边形
的周长为
,试将
表示成
的函数,并求出
的最大值.
【解析】第一问利用设
∵ A点坐标为
∴
,
(2)中 由条件知 AB=1,CD=2 ,
在
中,由余弦定理得 ![]()
∴ ![]()
∵
∴
,
∴ 当
时,即
当
时 , y有最大值5. .
如图,直线
与抛物线
交于
两点,与
轴相交于点
,且
.
(1)求证:
点的坐标为
;
(2)求证:
;
(3)求
的面积的最小值.
![]()
【解析】设出点M的坐标
,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为
,然后与抛物线方程联立消x,根据
,即可建立关于
的方程.求出
的值.
(2)在第(1)问的基础上,证明:
即可.
(3)先建立面积S关于m的函数关系式,根据
建立即可,然后再考虑利用函数求最值的方法求最值.
如图,已知四棱锥
的底面ABCD为正方形,
平面ABCD,E、F分别是BC,PC的中点,
,
.
(1)求证:
平面
;
(2)求二面角
的大小.
![]()
【解析】第一问利用线面垂直的判定定理和建立空间直角坐标系得到法向量来表示二面角的。
![]()
第二问中,以A为原点,如图所示建立直角坐标系
,,
设平面FAE法向量为
,则![]()
,
,
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com