题目列表(包括答案和解析)
已知
(m为常数,m>0且m≠1).
设
(n∈
?)是首项为m2,公比为m的等比数列.
(1)求证:数列
是等差数列;
(2)若
,且数列
的前n项和为Sn,当m=2时,求Sn;
已知
在点(1,f(1))处的切线方程为
。
(1)求f(x)的表达式;
(2)若f(x)满足
恒成立,则称f(x)为g(x)的一个“上界函数”,如果f(x)为
的一个“上界函数”,求t的取值范围;
(3)当m>0时讨论
在区间(0,2)上极值点的个数。
(本小题满分13分)
已知f(x)=mx(m为常数,m>0且m≠1).
设f(a1),f(a2),…,f(an)…(n∈N?)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an·f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn;
(3)若cn=f(an)lgf(an),问是否存在m,使得数列{cn}中每一项恒小于它后面的项?若存在,
求出m的范围;若不存在,请说明理由.
已知
(m为常数,m>0且m≠1).
设
(n∈
?)是首项为m2,公比为m的等比数列.
(1)求证:数列
是等差数列;
(2)若
,且数列
的前n项和为Sn,当m=2时,求Sn;
(3)若
,问是否存在m,使得数列
中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.
已知
(m为常数,m>0且m≠1).
设
(n∈
?)是首项为m2,公比为m的等比数列.
(1)求证:数列
是等差数列;
(2)若
,且数列
的前n项和为Sn,当m=2时,求Sn;
(3)若
,问是否存在m,使得数列
中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com