设.∵.故. --8分 查看更多

 

题目列表(包括答案和解析)

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>

.(本小题满分12分)一位客人去北京旅游,他游览长城、故宫、鸟巢这三个景点的概率分别为0.9、0.8、0.8,且他是否游览哪个景点互不影响.设表示客人离开北京时游览的景点数与没有游览的景点数之差的绝对值.
(1)求时的概率;
(2)记“函数在区间上是增函数”为事件A,求事件A的概率.

查看答案和解析>>

已知等比数列中,,且,公比,(1)求;(2)设,求数列的前项和

【解析】第一问,因为由题设可知

 故

,又由题设    从而

第二问中,

时,

时, 

时,

分别讨论得到结论。

由题设可知

 故

,又由题设   

从而……………………4分

(2)

时,……………………6分

时,……8分

时,

 ……………………10分

综上可得 

 

查看答案和解析>>

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.

【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1.     第二问中,,由第一问中知道,然后利用裂项求和得到Tn.

解: (Ⅰ) 设:{an}的公差为d,

因为解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因为……………8分

 

查看答案和解析>>

“肇实,正名芡实,因肇庆所产之芡实颗粒大、药力强,故名。”某科研所为进一步改良肇实,为此对肇实的两个品种(分别称为品种A和品种B)进行试验.选取两大片水塘,每大片水塘分成n小片水塘,在总共2n小片水塘中,随机选n小片水塘种植品种A,另外n小片水塘种植B.

(1)假设n=4,在第一大片水塘中,种植品种A的小片水塘的数目记为,求的分布列和数学期望;

(2)试验时每大片水塘分成8小片,即n=8,试验结束后得到品种A和品种B在每个小片水塘上的每亩产量(单位:kg/亩)如下表:

 号码

1

2

3

4

5

6

7

8

品种A

101

97

92

103

91

100

110

106

品种B

115

107

112

108

111

120

110

113

分别求品种A和品种B的每亩产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

 

查看答案和解析>>


同步练习册答案