∵E为棱CC的中点.由平面几何知识.得. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且BG=
14
BB′
,求证:FG∥平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且,求证:FG∥平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>

如图,已知直四棱柱ABCD-A′B′C′D′中,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点,
(1)求证:A′E⊥平面BDE;
(2)设F为AD中点,G为棱BB′上一点,且BG=BB′,求证:FG∥平面BDE;
(3)在(2)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>

已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且,求证:FG∥平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>


同步练习册答案