题目列表(包括答案和解析)
在边长为
的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(I)判别MN与平面AEF的位置关系,并给出证明;
(II)求多面体E-AFMN的体积.
![]()
【解析】第一问因翻折后B、C、D重合(如下图),所以MN应是
的一条中位线,则利用线线平行得到线面平行。
第二问因为
平面BEF,……………8分
且
,
∴
,又
∴![]()
(1)因翻折后B、C、D重合(如图),
![]()
所以MN应是
的一条中位线,………………3分
则
.………6分
(2)因为
平面BEF,……………8分
且
,
∴
,………………………………………10分
又
∴![]()
如图,直角梯形ABCE中,
,D是CE的中点,点M和点N在
ADE绕AD向上翻折的过程中,分别以
的速度,同时从点A和点B沿AE和BD各自匀速行进,t 为行进时间,0
。
求直线AE与平面CDE所成的角;
求证:MN//平面CDE。
![]()
如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将
折起,使得B与C重合于O.
(Ⅰ)设Q为AE的中点,证明:QD
AO;
(Ⅱ)求二面角O—AE—D的余弦值.
![]()
【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因为Q为AE的中点,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
第二问中,作MN
AE,垂足为N,连接DN
因为AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因为AO
DM ,DM
平面AOE
因为MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
![]()
(1)取AO中点M,连接MQ,DM,由题意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因为Q为AE的中点,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
(2)作MN
AE,垂足为N,连接DN
因为AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因为AO
DM ,DM
平面AOE
因为MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=![]()
二面角O-AE-D的平面角的余弦值为![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com