题目列表(包括答案和解析)
解不等式: ![]()
【解析】本试题主要是考查了分段函数与绝对值不等式的综合运用。利用零点分段论 的思想,分为三种情况韬略得到解集即可。也可以利用分段函数图像来解得。
解:方法一:零点分段讨论:
方法二:数形结合法:![]()
如下图,一条河宽1千米,相距4千米(直线距离)的两座城市A和B,分别位于河的两岸(城市A,B与岸的距离忽略不计).现需铺设一条电缆连通城市A与B.已知水下电缆的修建费为4万元/千米,地下电缆的修建费为2万元/千米,假设两岸是平行直线,问:应如何铺设电缆可使总费用最少?(
=3.873,
=1.732,精确到百米,百元)
某港口水的深度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下面是某日水深的数据:
经长期观察,y=f(t)的曲线可以近似地看成函数y=Asinωt+b的图象.
(1)试根据以上数据,求出函数y=f(t)的近似表达式.
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米.如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需的时间)?
如图,两铁路线垂直相交于站A,若已知AB=100公里,甲火车从A站出发,沿AC方向以50公里/小时的速度行驶,同时乙火车以V公里/小时的速度从B站沿BA方向行驶,行驶至A站时即停止(甲车仍继续行驶).
(1)求甲、乙两车的最近距离(两车的车长忽略不计);
(2)若甲、乙两车开始行驶到甲、乙两车相距最近所用时间为t0小时,问V为何值时,t0最大.
| |||||||||||
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com