题目列表(包括答案和解析)
数列
的前
项和为
,点
在直线
.
⑴若数列
成等比数列,求常数
的值;
⑵求数列
的通项公式;
⑶数列
中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;
若不存在,请说明理由.
已知数列
的前三项分别为
,
,
,(其中
为正常数)。设![]()
。
(1)归纳出数列
的通项公式,并证明数列
不可能为等比数列;
(2)若
=1,求
的值;
(3)若
=4,试证明:当
时,
.
| 第一列 | 第二列 | 第三列 | |
| 第一行 | 3 | 2 | 10 |
| 第二行 | 14 | 4 | 6 |
| 第三行 | 18 | 9 | 8 |
数列
的首项为
(
),前
项和为
,且
(
).设
,
(
).
(1)求数列
的通项公式;
(2)当
时,若对任意
,
恒成立,求
的取值范围;
(3)当
时,试求三个正数
,
,
的一组值,使得
为等比数列,且
,
,
成等差数列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com