当 故当n=k+1时命题成立. 查看更多

 

题目列表(包括答案和解析)

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>

对于不等式
n2+n
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
12+1
<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即
k2+k
<k+1,则当n=k+1时,
(k+1)2+(k+1)
=
k2+3k+2
(k2+3k+2)+(k+2)
=
(k+2)2
=(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法(  )
A、过程全部正确
B、n=1验得不正确
C、归纳假设不正确
D、从n=k到n=k+1的推理不正确

查看答案和解析>>

假设n=k时成立,当n=k+1时,证明1+
1
2
+
1
3
+
1
4
+…+
1
2n-1
n
2
(n∈N+)
,左端增加的项数是(  )

查看答案和解析>>

用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3•5•…•(2n-1)时,当n=k+1时,其形式是
(k+2)(k+3)…(2k+2)=2k+1•1•3•5•…•(2k+1)
(k+2)(k+3)…(2k+2)=2k+1•1•3•5•…•(2k+1)

查看答案和解析>>

证明1+
1
2
+
1
3
+
1
4
+…+
1
2n-1
n
2
(n∈N*),假设n=k时成立,当n=k+1时,左端增加的项数是(  )
A、1项
B、k-1项
C、k项
D、2k

查看答案和解析>>


同步练习册答案