题目列表(包括答案和解析)
已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{a
}各项的和为
.
(Ⅰ)求数列{an}的首项a1和公比q;
(Ⅱ)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前10项之和;
(Ⅲ)设bi为数列T(k)的第i项,Sn=b1+b2+…+bn,求Sn,并求正整数m(m>1),使得![]()
存在且不等于零.(注:无穷等比数列各项的和即当n→∞时该无穷等比数列前n项和的极限)
(3’+7’+8’)已知以a1为首项的数列{an}满足:an+1=.
(1)当a1=1,c=1,d=3时,求数列{an}的通项公式;
(2)当0<a1<1,c=1,d=3时,试用a1表示数列{an}的前100项的和S100;
(3)当0<a1<(m是正整数),c=,d≥3m时,求证:数列a2-,a3m+2-,a6m+2-,a9m+2-成等比数列当且仅当d=3m.
(3’+7’+8’)已知以a1为首项的数列{an}满足:an+1=.
(1)当a1=1,c=1,d=3时,求数列{an}的通项公式;
(2)当0<a1<1,c=1,d=3时,试用a1表示数列{an}的前100项的和S100;
(3)当0<a1<(m是正整数),c=,d≥3m时,求证:数列a2-,a3m+2-,a6m+2-,a9m+2-成等比数列当且仅当d=3m.
已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com