题目列表(包括答案和解析)
已知
,且方程
有两个不同的正根,其中一根是另一根的
倍,记等差数列
、
的前
项和分别为
,
且
(
)。
(1)若
,求
的最大值;
(2)若
,数列
的公差为3,试问在数列
与
中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列
的通项公式;若不存在,请说明理由.
(3)若
,数列
的公差为3,且
,
.
试证明:
.
.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为
,右焦点
,双曲线的实轴为
,
为双曲线上一点(不同于
),直线
,
分别与直线
交于
两点
(1)求双曲线的方程;
(2)
是否为定值,若为定值,求出该值;若不为定值,说明理由。
.(本小题满分14分)
已知椭圆
、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲
线上取两个点,将其坐标记录于下表中:
|
|
3 |
|
4 |
|
|
|
|
0 |
|
|
(Ⅰ)求
的标准方程;
(Ⅱ)请问是否存在直线
满足条件:①过
的焦点
;②与
交不同两点
且满
足
?若存在,求出直线
的方程;若不存在,说明理由。
.(本小题满分12分)
已知椭圆
与双曲线
有共同的焦点F1、F2,设它们在第一象限的交点为P,且![]()
(1)求椭圆的方程;
(2)已知N(0,-1),对于(1)中的椭圆,是否存在斜率为
的直线
,与椭圆交于不同的两点A、B,点Q满足
?若存在,求出
的取值范围;若不存在,说明理由。
已知
,且方程
有两个不同的正根,其中一根是另一根的
倍,记等差数列
、
的前
项和分别为
,
且
(
)。
(1)若
,求
的最大值;
(2)若
,数列
的公差为3,试问在数列
与
中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列
的通项公式;若不存在,请说明理由.
(3)若
,数列
的公差为3,且
,
.
试证明:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com