则Sn=1+2+3+-+n= 若a≠0且a≠1则Sn=a+2a2+3a3+4a4+-+ nan∴aSn= a2+2 a3+3 a4+-+nan+1 查看更多

 

题目列表(包括答案和解析)

已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足

(1)求a的值;

(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;

(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且,则称b为数列{bn}的“上渐近值”,令,求数列{p1+p2+…+pn-2n}的“上渐近值”.

查看答案和解析>>

已知数列{an}有a1a=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足

(1)求a的值;

(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;

(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且,则称b为数列{bn}的“上渐近值”,令,求数列{p1+p2+…+pn-2n}的“上渐近值”.

查看答案和解析>>

对于函数f(x),若存在x0∈R使f(x0)=x0成立,则称x0为f(x)的不动点,如果函数f(x)=
x2
ax-b
(a,b∈N)有且只有两个不动点为0、2,且b<3.
(1)求函数f(x)的解析式并写出函数f(x)的定义域;
(2)已知各项不为零的数列{an}满足:4Sn•f(
1
an
)=1
,且Sn=a1+a2+…+anTn=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,求Tn

查看答案和解析>>

已知,数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足

(1)求a的值;

(2)试确定数列{an}是不是等差数列,若是,求出其通项公式.若不是,说明理由;

(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b且,则称b为数列{bn}的“上渐进值”,令,求数列{p1+p2+…+pn-2n}的“上渐进值”.

查看答案和解析>>

给出以下四个命题:
①在△ABC中,若a=
3
,b=
6
,A=60°
,则此三角形不存在;
②当0<θ≤
π
2
时,sinθ+
2
sinθ
的最小值为2
2

③经过点(1,2)且在x轴、y轴上截距相等的直线方程是x+y-3=0;
④已知数列{an}的前n项和Sn=2n+r,若{an}为等比数列,则实数r=-1.
则其中所有正确命题的序号是
①④
①④

查看答案和解析>>


同步练习册答案