题目列表(包括答案和解析)
| 月收入(单位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
| 月收入不低于55百元的人数 | 月收入低于55百元的人数 | 合计 | |
| 赞成 | a= | c= | |
| 不赞成 | b= | d= | |
| 合计 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
| P(K^2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,釆用分层抽样抽取了 105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校.
|
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
|
频数 |
2 |
3 |
10 |
15 |
15 |
X |
3 |
1 |
乙校:
|
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110] |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
|
频数 |
1 |
2 |
9 |
8 |
10 |
10 |
y |
3 |
(1)计算x, y的值;
(2)由以上统计数据填写下面2X2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
![]()
附:![]()
|
P(k2>k0) |
0. 10 |
0. 025 |
0. 010 |
|
K |
2. 706 |
5. 024 |
6. 635 |
甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,釆用分层抽样抽取了 105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
|
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
|
频数 |
2 |
3 |
10 |
15[ |
15 |
X |
3 |
1 |
乙校:
|
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110] |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
|
频数 |
1 |
2 |
9 |
8 |
10 |
10 |
y |
3 |
(1)计算x, y的值;
(2)由以上统计数据填写下面2X2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
![]()
附:![]()
|
P(k2>k0) |
0. 10 |
0. 025 |
0. 010 |
|
K |
2. 706 |
5. 024 |
6. 635 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 2 | 3 | 10 | 15 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 15 | 10 | y | 3 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 9 | 8 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 3 |
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
| P(K2>K) | 0.10 | 0.025 | 0.010 |
| K2 | 2.706 | 5.024 | 6.635 |
甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
|
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
|
频数 |
2 |
3 |
10 |
15 |
|
分组 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
|
频数 |
15 |
x |
3 |
1 |
甲校:
|
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
|
频数 |
1 |
2 |
9 |
8 |
|
分组 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
|
频数 |
10 |
10 |
y |
3 |
乙校:
(Ⅰ)计算x,y的值。
|
|
甲校 |
乙校 |
总计 |
|
优秀 |
|
|
|
|
非优秀 |
|
|
|
|
总计 |
|
|
|
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异。
|
P(k2>k0) |
0.10 |
0.025 |
0.010 |
|
K |
2.706 |
5.024 |
6.635 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com