题目列表(包括答案和解析)
已知函数![]()
(1) 若函数
在
上单调,求
的值;
(2)若函数
在区间
上的最大值是
,求
的取值范围.
【解析】第一问,![]()
![]()
,
、
第二问中,![]()
由(1)知: 当
时,
上单调递增
满足条件当
时, ![]()
![]()
![]()
![]()
解: (1) ![]()
……3分
,
…………….7分
(2) ![]()
由(1)知: 当
时,
上单调递增
满足条件…………..10分
当
时,
且
![]()
…………13分
综上所述: ![]()
设函数
.
(I)求
的单调区间;
(II)当0<a<2时,求函数
在区间
上的最小值.
【解析】第一问定义域为真数大于零,得到
.
.
令
,则
,所以
或
,得到结论。
第二问中,
(
).
.
因为0<a<2,所以
,
.令
可得
.
对参数讨论的得到最值。
所以函数
在
上为减函数,在
上为增函数.
(I)定义域为
. ………………………1分
.
令
,则
,所以
或
. ……………………3分
因为定义域为
,所以
.
令
,则
,所以
.
因为定义域为
,所以
. ………………………5分
所以函数的单调递增区间为
,
单调递减区间为
.
………………………7分
(II)
(
).
.
因为0<a<2,所以
,
.令
可得
.…………9分
所以函数
在
上为减函数,在
上为增函数.
①当
,即
时,
在区间
上,
在
上为减函数,在
上为增函数.
所以
. ………………………10分
②当
,即
时,
在区间
上为减函数.
所以
.
综上所述,当
时,
;
当
时,![]()
(本小题16分)
探究函数
的最大值,并确定取得最大值时
的值.列表如下:
|
| … | -0.5 | -1 | -1.5 | -1.7 | -1.9 | -2 | -2.1 | -2.2 | -2.3 | -3 | … |
|
| … | -8.5 | -5 | -4.17 | -4.05 | -4.005 | -4 | -4.005 | -4.02 | -4.04 | -4.3 | … |
请观察表中
值随
值变化的特点,完成以下的问题.
(1)函数
在区间 上为单调递增函数.当
时,
.
(2)证明:函数
在区间
为单调递减函数.
(3)思考:函数
有最大值或最小值吗?如有,是多少?此时
为何值?(直接回答结果,不需证明).
(本小题满分16分)
探究函数
的最大值,并确定取得最大值时
的值.列表如下:
|
| … | -0.5 | -1 | -1.5 | -1.7 | -1.9 | -2 | -2.1 | -2.2 | -2.3 | -3 | … |
|
| … | -8.5 | -5 | -4.17 | -4.05 | -4.005 | -4 | -4.005 | -4.02 | -4.04 | -4.3 | … |
请观察表中
值随
值变化的特点,完成以下的问题.
函数
在区间
上为单调减函数;
(1)函数
在区间 上为单调递增函数.当
时,
.
(2)证明:函数
在区间
为单调递减函数.
(3)思考:函数
有最大值或最小值吗?如有,是多少?此时
为何值?(直接回答结果,不需证明).
(本小题满分16分)
探究函数
的最大值,并确定取得最大值时
的值.列表如下:
|
| … | -0.5 | -1 | -1.5 | -1.7 | -1.9 | -2 | -2.1 | -2.2 | -2.3 | -3 | … |
|
| … | -8.5 | -5 | -4.17 | -4.05 | -4.005 | -4 | -4.005 | -4.02 | -4.04 | -4.3 | … |
请观察表中
值随
值变化的特点,完成以下的问题.
函数
在区间
上为单调减函数;
(1)函数
在区间 上为单调递增函数.当
时,
.
(2)证明:函数
在区间
为单调递减函数.
(3)思考:函数
有最大值或最小值吗?如有,是多少?此时
为何值?(直接回答结果,不需证明).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com