题目列表(包括答案和解析)
已知![]()
(1)求函数
在
上的最小值
(2)对一切的
恒成立,求实数a的取值范围
(3)证明对一切
,都有
成立
【解析】第一问中利用
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
![]()
第二问中,
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
第三问中问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
解:(1)
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
…………4分
(2)
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
…………9分
(3)问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
已知
,设![]()
和
是方程
的两个根,不等式
对任意实数
恒成立;
函数
有两个不同的零点.求使“P且Q”为真命题的实数
的取值范围.
【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3. 当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”为真命题,只需P真Q真即可。
解:由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
综上,要使“P∧Q”为真命题,只需P真Q真,即![]()
解得实数m的取值范围是(4,8]
已知函数
.
(1)试求
的值域;
(2)设
,若对
,
,恒
成立,试求实数
的取值范围
【解析】第一问利用![]()
![]()
第二问中若
,则
,即当
时,
,又由(Ⅰ)知![]()
若对
,
,恒有
成立,即![]()
转化得到。
解:(1)函数可化为
,
……5分
(2) 若
,则
,即当
时,
,又由(Ⅰ)知
. …………8分
若对
,
,恒有
成立,即![]()
,
![]()
,即
的取值范围是![]()
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量
的函数,右边仅含常数,求函数的最值”.
丙说:“把不等式两边看成关于
的函数,作出函数图像”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即
的取值范围是 .
三个同学对问题“关于
的不等式
+25+|
-5
|≥
在[1,12]上恒成立,求实数
的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量
的函数,右边仅含常数,求函数的最值”.
丙说:“把不等式两边看成关于
的函数,作出函数图像”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即
的取值范围是 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com