题目列表(包括答案和解析)
在平面直角坐标系
中,曲线
与坐标轴的交点都在圆
上.
(1)求圆
的方程;
(2)若圆
与直线
交于
、
两点,且
,求
的值.
【解析】本试题主要是考查了直线与圆的位置关系的运用。
(1)曲线
与
轴的交点为(0,1),
与
轴的交点为(3+2
,0),(3-2
,0) 故可设
的圆心为(3,t),则有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因为圆
与直线
交于
、
两点,且
。联立方程组得到结论。
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
【解析】利用圆心和半径表示圆的方程,首先
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2)
∴r=
=
,
故所求圆的方程为:
+
=2
解:法一:
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2) ……………………8分
∴r=
=
,
………………………10分
故所求圆的方程为:
+
=2
………………………12分
法二:由条件设所求圆的方程为:
+
=
, ………………………6分
解得a=1,b=-2,
=2
………………………10分
所求圆的方程为:
+
=2
………………………12分
其它方法相应给分
.给出下列命题:
①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;
②命题在“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;
③命题“若a>b>0,则
>
>0”的逆否命题;
④若“m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.
其中真命题的序号为________.
如图,某小区准备绿化一块直径为
的半圆形空地,
外的地方种草,
的内接正方形
为一水池,其余地方种花.若
,设
的面积为
,正方形
的面积为
,将比值
称为“规划合理度”.
(1)试用
,
表示
和
.
(2)当
为定值,
变化时,求“规划合理度”取得最小值时的角
的大小.
![]()
【解析】第一问中利用在![]()
ABC中
,
=
设正方形的边长为
则 ![]()
然后解得
第二问中,利用
而
=![]()
借助于
为减函数
得到结论。
(1)、 如图,在![]()
ABC中
,
=
设正方形的边长为
则 ![]()
=
![]()
(2)、
而
=
∵0 <
<
,又0 <2
<
,
0<t£1
为减函数
当
时
取得最小值为
此时
已知直线x+y-3m=0和2x-y+2m-1=0的交点M在第四象限,求实数m的取值范围.
[分析] 解方程组得交点坐标,再根据点M在第四象限列出不等式组,解得m的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com