题目列表(包括答案和解析)
命题
方程
有两个不等的正实数根,
命题
方程
无实数根。若“
或
”为真命题,求
的取值范围。
【解析】本试题主要考查了命题的真值问题,以及二次方程根的综合运用。
解:“p或q”为真命题,则p为真命题,或q为真命题,或q和p都是真命题
当p为真命题时,则
,得
;
当q为真命题时,则![]()
当q和p都是真命题时,得![]()
若关于
的方程
有实根,求
的取值范围。
变题1:设有两个命题:①关于
的方程
有解;②函数
是减函数。当①与②至少有一个真命题时,实数
的取值范围是__
变题2:方程
的两根均大于1,则实数a的取值范围是_____。
(14分)
已知函数
(
),且方程
有两个实数根为
;
(1)求函数
的解析式。
(2)当
时,若
恒成立,求
的取值范围。
(3)设
,解关于
的不等式:![]()
已知
,设![]()
和
是方程
的两个根,不等式
对任意实数
恒成立;
函数
有两个不同的零点.求使“P且Q”为真命题的实数
的取值范围.
【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3. 当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”为真命题,只需P真Q真即可。
解:由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
综上,要使“P∧Q”为真命题,只需P真Q真,即![]()
解得实数m的取值范围是(4,8]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com