(2) 证明:lnx< 查看更多

 

题目列表(包括答案和解析)

(1)证明:对?x>0,lnx≤x-1;
(2)数列{an},若存在常数M>0,?n∈N*,都有an<M,则称数列{an}有上界.已知数学公式,试判断数列{bn}是否有上界.

查看答案和解析>>

(1)证明:对?x>0,lnx≤x-1;
(2)数列{an},若存在常数M>0,?n∈N*,都有an<M,则称数列{an}有上界.已知bn=1+
1
2
+…+
1
n
,试判断数列{bn}是否有上界.

查看答案和解析>>

(1)证明:对?x>0,lnx≤x-1;
(2)数列{an},若存在常数M>0,?n∈N*,都有an<M,则称数列{an}有上界.已知,试判断数列{bn}是否有上界.

查看答案和解析>>

利用函数的单调性,证明:lnx<x<ex,x>0

查看答案和解析>>

已知f(x)=ax+lnx,x∈(0,e],g(x)=
lnx
x
,其中e=2.71828…是自然对数的底数,a∈R.
(1)若a=-1,求f(x)的极值;
(2)求证:在(1)的条件下,f(x)<-g(x)-
1
2

(3)是否存在实数a,使f(x)的最大值是-3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>


同步练习册答案