(3)问题即为是否存在实数b.使得函数恰有3个不同根. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在x轴上方有一段曲线弧Γ,其端点A、B在x轴上(但不属于Γ),对Γ上任一点P及点F1(-1,0),F2(1,0),满足:|PF1|+|PF2|=2
2
.直线AP,BP分别交直线l:x=a (a>
2
)
于R,T两点.
(1)求曲线弧Γ的方程;
(2)求|RT|的最小值(用a表示);
(3)曲线Γ上是否存点P,使△PRT为正三角形?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

如图,在x轴上方有一段曲线弧Γ,其端点A、B在x轴上(但不属于Γ),对Γ上任一点P及点F1(-1,0),F2(1,0),满足:.直线AP,BP分别交直线于R,T两点.
(1)求曲线弧Γ的方程;
(2)求|RT|的最小值(用a表示);
(3)曲线Γ上是否存点P,使△PRT为正三角形?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

如图,在轴上方有一段曲线弧,其端点轴上(但不属于),对上任一点及点,满足:.直线分别交直线两点.

(1)求曲线弧的方程;

(2)求的最小值(用表示);

(3)曲线上是否存点,使为正三角形?若存在,求的取值范围;若不存在,说明理由.

 


查看答案和解析>>

如图,在x轴上方有一段曲线弧Γ,其端点A、B在x轴上(但不属于Γ),对Γ上任一点P及点F1(-1,0),F2(1,0),满足:.直线AP,BP分别交直线于R,T两点.
(1)求曲线弧Γ的方程;
(2)求|RT|的最小值(用a表示);
(3)曲线Γ上是否存点P,使△PRT为正三角形?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

Monte-Carlo方法在解决数学问题中有广泛的应用。下面是利用Monte-Carlo方法来计算定积分。考虑定积分,这时等于由曲线轴,所围成的区域M的面积,为求它的值,我们在M外作一个边长为1正方形OABC。设想在正方形OABC内随机投掷个点,若个点中有个点落入中,则的面积的估计值为,此即为定积分的估计值I。向正方形中随机投掷10000个点,有个点落入区域M

(1)若=2099,计算I的值,并以实际值比较误差是否在5%以内

(2)求的数学期望

(3)用以上方法求定积分,求I与实际值之差在区间(—0.01,0.01)的概率

附表:

n

1899

1900

1901

2099

2100

2101

P(n)

0.0058

0.0062

0.0067

0.9933

0.9938

0.9942

查看答案和解析>>


同步练习册答案