由.解得 或; --- 4分 查看更多

 

题目列表(包括答案和解析)

在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.

⑴ 若cosA=-,求cosC的值;  ⑵ 若AC=,BC=5,求△ABC的面积.

【解析】第一问中sinB=, sinA=

cosC=cos(180°-A-B)=-cos(A+B)                =sinA.sinB-cosA·cosB

×-(-

第二问中,由-2AB×BC×cosB得 10=+25-8AB

解得AB=5或AB=3综合得△ABC的面积为

解:⑴ sinB=, sinA=,………………2分

∴cosC=cos(180°-A-B)=-cos(A+B)                  ……………………3分

=sinA.sinB-cosA·cosB                            ……………………4分

×-(-                   ……………………6分

⑵ 由-2AB×BC×cosB得 10=+25-8AB   ………………7分

解得AB=5或AB=3,                               ……………………9分

若AB=5,则S△ABCAB×BC×sinB=×5×5×    ………………10分

若AB=3,则S△ABCAB×BC×sinB=×5×3×……………………11分

综合得△ABC的面积为

 

查看答案和解析>>

如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?

(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力   第一问要利用相似比得到结论。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)

第二问,  

当且仅当

(3)令

∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.                

∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>


同步练习册答案