题目列表(包括答案和解析)
(本小题满分12分)
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:
|
射手甲 |
射手乙 |
||||||
|
环数 |
8 |
9 |
10 |
环数 |
8 |
9 |
10 |
|
概率 |
|
|
|
概率 |
|
|
|
(Ⅰ)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率;
(Ⅱ)若两个射手各射击1次,记所得的环数之和为
,求
的分布列和期望.
(本小题满分13分)
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:K^S*5U.C#O%
|
射手甲 |
射手乙 |
||||||
|
环数 |
8 |
9 |
10 |
环数 |
8 |
9 |
10 |
|
概率 |
|
|
|
概率 |
|
|
|
(1)若甲射手共有5发子弹,一旦命中10环就停止射击,求他剩余3颗子弹的概率;
(2)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率;K^S*5U.C#O%
(3)若两个射手各射击1次,记所得的环数之和为
,求
的分布列和期望。
(本小题满分12分)
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:
| 射手甲 | 射手乙 | ||||||
| 环数 | 8 | 9 | 10 | 环数 | 8 | 9 | 10 |
| 概率 | 概率 | ||||||
设点
是抛物线![]()
![]()
的焦点,
是抛物线
上的
个不同的点(![]()
).
(1) 当
时,试写出抛物线
上的三个定点
、
、
的坐标,从而使得
;
(2)当
时,若
,
求证:
;
(3) 当
时,某同学对(2)的逆命题,即:
“若
,则
.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数
,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
【解析】第一问利用抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.
由抛物线定义得到
第二问设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
第三问中①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;![]()
解:(1)抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.由抛物线定义得
![]()
![]()
因为
,所以
,
故可取![]()
![]()
满足条件.
(2)设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
又因为![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;
,
则![]()
![]()
,![]()
![]()
.
故
,
,
,
是一个当
时,该逆命题的一个反例.(反例不唯一)
② 设
,分别过
作
抛物线
的准线
的垂线,垂足分别为
,
由
及抛物线的定义得
,即
.
因为上述表达式与点
的纵坐标无关,所以只要将这
点都取在
轴的上方,则它们的纵坐标都大于零,则
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(说明:本质上只需构造满足条件且
的一组
个不同的点,均为反例.)
③ 补充条件1:“点
的纵坐标
(
)满足
”,即:
“当
时,若
,且点
的纵坐标
(
)满足
,则
”.此命题为真.事实上,设
,
分别过
作抛物线
准线
的垂线,垂足分别为
,由
,
及抛物线的定义得
,即
,则
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命题为真.
补充条件2:“点
与点![]()
为偶数,
关于
轴对称”,即:
“当
时,若
,且点
与点![]()
为偶数,
关于
轴对称,则
”.此命题为真.(证略)
一.选择题 : 本大题共10小题, 每小题5分, 共50分.
题号
1
2
3
4
5
6
7
8
9
10
答案
C
D
A
B
B
D
A
C
D
C
二.填空题:本大题有5小题, 每小题4分, 共20分.
11.
5 12.充分不必要 13. -1 14.
15.
三.解答题:本大题有5小题, 共50分. 解答应写出文字说明, 证明过程或演算步骤.
16解: 因为
,所以-2<m<2;……………………………………1分
若方程
无实根,则
, ……2分
即
, 所以q:1<m<3. ……………………………………3分
因为┲p为假,则p为真,又因为p∧q为假,则q为假. ……………………5分
所以
……………………7分
所以-2<m≤1.故实数
的取值范围为
. ………………………………8分
17.解: (1) 由椭圆的定义知 c=6 ……1分
=
……3分
所以椭圆的标准方程为
……5分
(2)设双曲线的方程为
……8分
点P(5,2)代入上式得
所以双曲线的标准方程为
……10分
18、解:(1)设小正方形边长为x cm,
则V=(8-2x)?(5-2x)x=4x3-26x2+40x (0<x<
)
……4分
V′=4(3x2-13x+10) (0<x<
)
V′=0得x=1或
(舍去)
……7分
,
根据实际情况,小盒容积最大是存在的,
∴当x=
19.解:(1)
的导数
.
---------2分
令
,解得
,或
;
令
,解得
.
---------4分
从而
的单调递增区间为
,
;
单调递减区间为
.
---------5分
(2)由(1)知
,
---------8分
从而当
时,函数
取得最小值
.
因为存在
,使不等式
成立,
故
, 即
,
---------10分
20.解:(1)设抛物线方程为
,
AB的方程为
,
联立消
整理,得
;
-------2分
∴
又依题有
,∴
, -------4分
∴抛物线方程为
;
---------5分
(2)设
,
,
,∵
,
∴
的方程为
;
∵
过
,∴
,同理
-------8分
∴
为方程
的两个根;∴
;
又
,∴
的方程为
-------11分
∴
,显然直线
过点
--------12分
命题学校:瑞安四中(65531798) 命题人:叶海静(13868821241)
审核学校:洞头一中 (63480535) 审核人:陈后万(13858823246)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com