题目列表(包括答案和解析)
设函数f(x)的定义域D关于原点对称,0∈D,且存在常数a>0,使f(a)=1,又
,
(1)写出f(x)的一个函数解析式,并说明其符合题设条件;
(2)判断并证明函数f(x)的奇偶性;
(3)若存在正常数T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)对于x∈D都成立,则都称f(x)是周期函数,T为周期;试问f(x)是不是周期函数?若是,则求出它的一个周期T;若不是,则说明理由。
已知函数f(x)=
,
为常数。
(I)当
=1时,求f(x)的单调区间;
(II)若函数f(x)在区间[1,2]上为单调函数,求
的取值范围。
【解析】本试题主要考查了导数在研究函数中的运用。第一问中,利用当a=1时,f(x)=
,则f(x)的定义域是
然后求导,
,得到由
,得0<x<1;由
,得x>1;得到单调区间。第二问函数f(x)在区间[1,2]上为单调函数,则
或
在区间[1,2]上恒成立,即即
,或
在区间[1,2]上恒成立,解得a的范围。
(1)当a=1时,f(x)=
,则f(x)的定义域是![]()
。
由
,得0<x<1;由
,得x>1;
∴f(x)在(0,1)上是增函数,在(1,
上是减函数。……………6分
(2)
。若函数f(x)在区间[1,2]上为单调函数,
则
或
在区间[1,2]上恒成立。∴
,或
在区间[1,2]上恒成立。即
,或
在区间[1,2]上恒成立。
又h(x)=
在区间[1,2]上是增函数。h(x)max=(2)=
,h(x)min=h(1)=3
即![]()
,或
。 ∴![]()
,或
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com