因此.满足条件的实数m存在.它可取内的一切值. 查看更多

 

题目列表(包括答案和解析)

已知圆C的方程为x2+y2=4,动点P满足:过点P作直线与圆C相交所得的所有弦中,弦长最小的为2,记所有满足条件的点P形成的几何图形为曲线M.
(1)写出曲线M所对应的方程;(不需要解答过程)
(2)过点S(0,2)的直线l与圆C交于A,B两点,与曲线M交于E,F两点,若AB=2EF,求直线l的方程;
(3)设点T(x0,y0).
①当y0=0时,若过点T存在一对互相垂直的直线同时与圆C有两个公共点,求实数x0的取值范围;
②若过点T存在一对互相垂直的直线同时与圆C有两个公共点,试探求实数x0,y0应满足的条件.

查看答案和解析>>

下列函数①f(x)=
1
x
;②f(x)=sin2x;③f(x)=2-|x|;④f(x)=
1
cotx
中,满足“存在与x无关的正常数M,使得|f(x)|≤M对定义域内的一切实数x都成立”的有
 
.(把满足条件的函数序号都填上)

查看答案和解析>>

如图:在平面直角坐标系xOy中,四边形OABC是平行四边形,A(4,0),C(1,
3
)
,点M是OA的中点,点P在线段BC上运动(包括端点)
(1)求u=
OP
CM
的最大值.
(2)是否存在实数λ,使
OA
-
OP
)⊥
CM
?若存在,求出满足条件的实数λ的取值范围,若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xoy中,已知四边形OABC是平行四边形,A(4,0),C(1,
3
),点M是OA的中点,点P在线段BC上运动(包括端点),如图
(Ⅰ)求∠ABC的大小;
(Ⅱ)是否存在实数λ,使
OA
-
OP
)⊥
CM
?若存在,求出满足条件的实数λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

精英家教网设集合W由满足下列两个条件的数列{an}构成:
an+an+22
an+1
;②存在实数M,使an≤M.( n为正整数)
(Ⅰ)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1,试判断数列{an}、{bn}是否为集合W中的元素;
(Ⅱ)设{cn}是等差数列,Sn是其前n项和,c3=4,S3=18,证明数列{Sn}∈W;并写出M的取值范围;
(Ⅲ)设数列{dn}∈W,且对满足条件的常数M,存在正整数k,使dk=M.
求证:dk+1>dk+2>dk+3

查看答案和解析>>


同步练习册答案