题目列表(包括答案和解析)
(12分)
学校欲在操场边上一直角三角形空地ABC上种植草坪,并需铺设一根水管EF(E在AC上,F在AB上)用于灌溉,已知∠A=30°,∠C=90°,BC=2a,D是BC中点,为确保灌溉的效果,铺设时要求∠EDF=60°。现有两种方案可供参考。甲方案:取AC的中点E铺设水管;乙方案:取AB的中点F铺设水管。
![]()
(1)比较甲乙两种方案,哪一种方案更合理(EF的长较小的合理);
(2)学校研究小组通过研究得出:无论D在BC的什么位置,总存在E,F两点,使△DEF为正三角形。试证明该结论的正确性。
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
![]()
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)证明:易得
,
于是
,所以![]()
(2)
,
设平面PCD的法向量
,
则
,即
.不防设
,可得
.可取平面PAC的法向量
于是
从而
.
所以二面角A-PC-D的正弦值为
.
(3)设点E的坐标为(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)证明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如图,作
于点H,连接DH.由
,
,可得
.
因此
,从而
为二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值为
.
(3)如图,因为
,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故
或其补角为异面直线BE与CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2
,PA=2,E是PC上的一点,PE=2EC.
![]()
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小
【解析】解法一:因为底面ABCD为菱形,所以BD
AC,又
![]()
![]()
![]()
![]()
⊙O1和⊙O2的极坐标方程分别为
,
.
⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.
【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用
(1)中,借助于公式
,
,将极坐标方程化为普通方程即可。
(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。
解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(I)
,
,由
得
.所以
.
即
为⊙O1的直角坐标方程.
同理
为⊙O2的直角坐标方程.
(II)解法一:由
解得
,![]()
即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.
解法二: 由
,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x
已知直三棱柱
中,
,
,
是
和
的交点, 若
.
(1)求
的长; (2)求点
到平面
的距离;
(3)求二面角
的平面角的正弦值的大小.
![]()
【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACC
A
为正方形,
AC=3
第二问中,利用面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为![]()
解法一: (1)连AC
交A
C于E, 易证ACC
A
为正方形,
AC=3
…………… 5分
(2)在面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
… 8分
(3) 易得AC![]()
面A
CB,
过E作EH
A
B于H, 连HC
,
则HC![]()
A
B
![]()
C
HE为二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=![]()
二面角C
-A
B-C的平面角的正弦大小为
……… 12分
解法二: (1)分别以直线C
B、CC
、C
A为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
![]()
=(2, -
, -
),
=(0,
-3, -h) ……… 4分
![]()
·
=0,
h=3
(2)设平面A
BC
得法向量
=(a, b, c),则可求得
=(3, 4, 0) (令a=3)
点A到平面A
BC
的距离为H=|
|=
……… 8分
(3) 设平面A
BC的法向量为
=(x, y, z),则可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
满足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小为![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com