∴ y0-y1=x02-x12=(x0+x1)(x0-x1)=x(x0-x1). 查看更多

 

题目列表(包括答案和解析)

抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于
A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1).
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足
BM
MA
,证明线段PM的中点在y轴上.

查看答案和解析>>

已知函数f(x)=lnx-
1
2
ax2+bx(a>0),且f′(1)=0
(1)试用含有a的式子表示b,并求f(x)的单调区间;
(2)设函数f(x)的最大值为g(a),试证明不等式:g(a)>ln(1+
a
2
)-1
(3)首先阅读材料:对于函数图象上的任意两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数图象上存在点M(x0,y0)(x0∈(x1,x2)),使得f(x)在点M处的切线l∥AB,则称AB存在“相依切线”特别地,当x0=
x1+x2
2
时,则称AB存在“中值相依切线”.请问在函数f(x)的图象上是否存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由.

查看答案和解析>>

抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1).
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足
BM
MA
,证明线段PM的中点在y轴上;
(Ⅲ)当λ=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标y1的取值范围.

查看答案和解析>>

抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1、k2的两条直线分别交抛物线C于A(x1,y1)、B(x2,y2)两点(P、A、B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1),
(1)设直线AB上一点M,满足
BM
MA
,证明线段PM的中点在y轴上;
(2)当λ=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标y1的取值范围.

查看答案和解析>>

设抛物线C:x2=2py(p>0)的焦点为F,A(x0,y0)(x0≠0)是抛物线C上的一定点.
(1)已知直线l过抛物线C的焦点F,且与C的对称轴垂直,l与C交于Q,R两点,S为C的准线上一点,若△QRS的面积为4,求p的值;
(2)过点A作倾斜角互补的两条直线AM,AN,与抛物线C的交点分别为M(x1,y1),N(x2,y2).若直线AM,AN的斜率都存在,证明:直线MN的斜率等于抛物线C在点A关于对称轴的对称点A1处的切线的斜率.

查看答案和解析>>


同步练习册答案