将上式代入②并整理.得 y=x2+(x≠0)就是所求的轨迹方程. 查看更多

 

题目列表(包括答案和解析)

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

若数列an=(2n-1)×2n,求其前n项和为Sn=1×2+3×22+…+(2n-1)×2n时,可对上式左、右的两边同乘以2,得到2Sn=1×22+3×23+…+(2n-1)×2n+1,两式相减并整理后,求得Sn=(2n-3)×2n+1+6.试类比此方法,求得bn=n2×2n的前n项和Tn=
(n2-2n+3)×2n+1-6
(n2-2n+3)×2n+1-6

查看答案和解析>>

从方程
x=2t
y=t-3
中消去t,此过程如下:
由x=2t得t=
x
2
,将t=
x
2
代入y=t-3中,得到y=
1
2
x-3

仿照上述方法,将方程
x=3cosα
y=2sinα
中的α消去,并说明它表示什么图形,求出其焦点.

查看答案和解析>>

已知曲线上动点到定点与定直线的距离之比为常数

(1)求曲线的轨迹方程;

(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;

(3)以曲线的左顶点为圆心作圆,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.

【解析】第一问利用(1)过点作直线的垂线,垂足为D.

代入坐标得到

第二问当斜率k不存在时,检验得不符合要求;

当直线l的斜率为k时,;,化简得

第三问点N与点M关于X轴对称,设,, 不妨设

由于点M在椭圆C上,所以

由已知,则

由于,故当时,取得最小值为

计算得,,故,又点在圆上,代入圆的方程得到.  

故圆T的方程为:

 

查看答案和解析>>

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验如下:

零件的个数(个)

2

3

4

5

加工的时间(小时)

2.5

3

4

4.5

(1)在给定坐标系中画出表中数据的散点图;

(2)求关于的线性回归方程

(3)试预测加工10个零件需要多少时间?

【解析】第一问中,利用表格中的数据先作出散点图

第二问中,求解均值a,b的值,从而得到线性回归方程。

第三问,利用回归方程将x=10代入方程中,得到y的预测值。

解:(1)散点图(略)   (2分)

(2) (4分)

         (7分)

        (8分)∴回归直线方程:       (9分)

(3)当∴预测加工10个零件需要8.05小时。

 

查看答案和解析>>


同步练习册答案