让学生通过观察.思考.探究.讨论.主动地学习. 查看更多

 

题目列表(包括答案和解析)

如图:已知反比例C1y=
k1
x
;C2y=
k2
x
,且k1>k2>0,点P是双曲线C1上的一点,过P点引x、y轴的平行线交双曲线C2于A、B两点,连接AB.
(1)当取k1=4,k2=1,
①点P坐标为(2,2)时,则S三角形ABP=
9
8
9
8

②点P坐标为(1,4)时,S三角形ABP=
9
8
9
8

(2)通过观察、思考(1)的计算结果,你能猜想到△ABP的面积有何规律或特征?并请你用含k1、k2的代数式表示△ABP的面积.

查看答案和解析>>

如图,四边形ABCD是正方形,点E是CD上一点,点F是CB延长线上一点,且DE=BF,通过观察与思考可以知道△AFB可以看作是
△AED
△AED
点A
点A
,顺时针旋转
90°
90°
得到△AEF是
等腰直角
等腰直角
三角形.

查看答案和解析>>

9、妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:

老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…

查看答案和解析>>

19、《天天伴我学数学》一道作业题.如图1:请你想办法求出五角星中∠A+∠B+∠C+∠D+∠E的值.由于刚涉及到几何证明,很多学生不知道如何求出其结果.下面是习题讲解时,老师和学生对话的情景:老师向学生抛出问题:①观察图象,各个角的度数能分别求出他们的度数吗,能的话怎么求,不能的话怎么办?学生通过观察回答:很明显每个角都不规则,求不出各个角的度数.有个学生小声的说了句:要是能把这五个角放到一块就好了?老师回答:有想法,就去试试看.很快就有学生发现利用三角形外角性质将∠C和∠E;∠B和∠D分别用外角∠1和∠2表示.于是得到∠A+∠B+∠C+∠D+∠E=∠A+∠1+∠2=180°.根据以上信息,亲爱的同学们,你能求出图2中∠A+∠B+∠C+∠D+∠E+∠F+∠G的值吗?请给予证明.

查看答案和解析>>

如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.
(1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)
(2)将△DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.
精英家教网

查看答案和解析>>


同步练习册答案