12.定义:若存在常数k.使得对定义域D内的任意两个不同的实数x1.x2均有|f(x1)-f(x2)|≤k|x1-x2|成立.则称函数f(x)在定义域D上满足利普希茨条件.对于函数f(x)= 满足利普希茨条件.则常数k的最小值应是 查看更多

 

题目列表(包括答案和解析)

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在x∈(0,
e
)
递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为-
1
4

④函数h(x)和m(x)存在唯一的隔离直线y=2
e
x-e

其中真命题的个数(  )

查看答案和解析>>

若存在实常数,使得函数对其公共定义域上的任意实数都满足:恒成立,则称此直线的“隔离直线”.已知函数.有下列命题:
内单调递增;
之间存在“隔离直线”, 且b的最小值为-4;
之间存在“隔离直线”, 且k的取值范围是;
之间存在唯一的“隔离直线”
其中真命题的个数有(      ).

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为
④函数h(x)和m(x)存在唯一的隔离直线
其中真命题的个数( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

若存在实常数,使得函数对其公共定义域上的任意实数都满足:恒成立,则称此直线的“隔离直线”.已知函数.有下列命题:
内单调递增;
之间存在“隔离直线”, 且b的最小值为-4;
之间存在“隔离直线”, 且k的取值范围是;
之间存在唯一的“隔离直线”
其中真命题的个数有(      ).
A.1个B.2个C.3个D.4个

查看答案和解析>>

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在数学公式递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为数学公式
④函数h(x)和m(x)存在唯一的隔离直线数学公式
其中真命题的个数


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

 

一、选择题:(本大题共12小题每小题5分,共60分)

AADCB  DDBCC  DC

二、填空题:(共4小题,每小题4分,共16分)

13. 14.20  15.32  16.

三、解答题:(共6小题,共74分)

17.解:(1)………………2分

    .………………………………4分

在[0,π]上单调递增区间为.…………………6分

   (2)

    当x=0时,,………………………………………8分

    由题设知…………………………………………10分

解之,得…………………………………………12分

可建立空间直角坐标系A-xyz,由平面几何知

识知:AD=4,D(O,4,O),B(2,0,0)。

C(2,2,0),P(0,0,2),E(0,0,1),

F(1,0,1),G(1,1,1).……………2分

   (1)=(1,0,1),=(一1,1,1),

?=0

∴AF与BG所成的角为……………………………4分

   (2)可证明AD⊥平面APB,平面APB的法向量为n(0,1,0)

设平面CPD的法向量为m=(1, y, z),由

  ∴ m=(1,1,2) ……………………………………………………10分

  ∴ …………………………12分

19.解:填湖面积     填湖及排水设备费   水面经济收益     填湖造地后收益

          x(亩)      ax2(元)               bx                 cx

   (1)收益不小于指出的条件可以表示为

  所以.……………………………………3分

显然a>0,又c>b

时,此时所填面积的最大值为亩……………………………7分

   (2)设该地现在水面m亩.今年填湖造地y亩,

,………………9分

,所以.

因此今年填湖造地面积最多只能占现有水面的………………………………12分

 20.(本小题满分12分)

     解:(1)根据导数的几何意义知f(x)=g′(x)=x2+ax-b

     由已知-2、4是方程x2+ax-b=0的两个实根

     由韦达定理,,………………5分

(2)g(x)在区间[一1,3]上是单调递减函数,所以在[一1,3]区间上恒有

横成立

这只需满足

而a2+b2可视为平面区域内的点到原点距离的平方,其中点(-2,3)距离原点最近.所以当时,a2+b2 有最小值13. ………………………………12分

21.解(1)A(a,0),B(0,b),P(x,y)

,即……………………………2分

,由题意知t>0,

点P的轨迹方程C为:.…………………………4分

(2). T=2 时,C为.………………………………………5分

设M(x1,y1),则N(-x1,-y1),则MN=

设直线MN的方程为

点Q到MN距离为

…………………………………………………………………………7分

∴SΔQMN=.…………………………………8分

∵S2ΔQMN=

∴S2ΔQMN=4?9x1y1

…………………………………………………………11分

当且仅当时,等号成立

∴SΔQMN的最大值为……………………………………………………12分

22.(1)证明:,因为对称轴,所以在[0,1]上为增函数,.……………………………………………………4分

   (2)解:由

两式相减得, ………………7分

当n=1时,b1=S1=1

当nㄒ2时,

  ………………9分

   (3)解:由(1)与(2)得  …………10分

假设存在正整数k时,使得对于任意的正整数n,都有cnck成立,

当n=1,2时,c2-c1= c2> c1

当n=2时,cn+1-cn=(n-2

所以当n<8时,cn+1>cn

当n=8时,cn+1=cn

当n>8时,cn+1<cn,   ……………………13分

所以存在正整数k=9,使得对于任意的正整数n,都有cnck成立。  …………14分