4.小结 (1)探索相似三角形的性质:相似三角形对应线段的比等于相似比.会运用相似三角形对应高的比等于相似比的性质解决有关问题, (2)经历“操作一观察一探索一说理 的数学活动过程.发展合情推理和有条理的表达能力. 查看更多

 

题目列表(包括答案和解析)

四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质,只要善于观察、乐于探索,我们会发现更多的结论.问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个小三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?

(1)为了更直观的发现问题,我们不妨先在特殊的四边形——平行四边形中,研究这个问题:已知:在ABCD中,O是对角线BD上任意一点(如图①)求证:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索过程作参照,你一定能类比出一般四边形(如图②)中,解决问题的办法了吧!填写结论并写出证明过程.

已知:在四边形ABCD中,O是对角线BD上任意一点.(如图②)

求证:________.

证明:

(3)在三角形中(如图③),你能否归纳出类似的结论?若能,用文字叙述你归纳出的结论,并写出已知、求证和证明过程;若不能,说明理由.

查看答案和解析>>

(2012•南湖区二模)在特殊四边形的复习课上,王老师出了这样一道题:
如图1,在?ABCD中,E、F、G、H分别为AB,BC,CD,DA边上的动点,连接EG,HF相交于点O,且∠HOE=∠ADC,若AB=a,AD=b,试探究:EG与FH的数量关系.
经过小组讨论后,小聪建议分以下三步进行,请你解答:
(1)特殊情况,探索结论
当?ABCD是边长为a的正方形时(如图2),请写出EG与FH的数量关系(不必证明);
(2)尝试变题,再探思路
当?ABCD是边长为a的菱形时(如图3),EG与FH又有怎样的数量关系呢?
小聪想:要求EG与FH的数量关系,就要构成全等三角形或相似三角形,于是,分别过点G、H作GM⊥AB于点M,HN⊥BC于点N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面积与性质可得GM=HN,能否从已知条件得到∠MGE=∠NHF呢?请你根据小聪的思路完成解答过程;
(3)特例启发,解答题目
猜想:原题中EG与FH的数量关系是
EG
FH
=
b
a
EG
FH
=
b
a
,并说明理由.

查看答案和解析>>


同步练习册答案