2004年普通高等学校招生全国统一考试 查看更多

 

题目列表(包括答案和解析)

据报载,自2004年起的三年内,我国城市垃圾平均每年以9%的速度增长,到2006年底,三年总共堆存的垃圾将达60亿吨,侵占了约五亿平方米的土地.

(1)问:2004年我国城市垃圾约有多少亿吨?  追求科学需要特殊的勇敢。——伽利略

(2)据统计,从2007年以来我国还在以年产一亿吨的速度生产着新的垃圾,从资源学观点看,生活垃圾也是资源,如果1.4亿吨垃圾发电,可以节约2 333万吨煤炭,现在从2007年起,我国每年处理上年总共堆存垃圾的用于发电,问:2007和2008这两年,每年可节约多少吨煤炭以及共节约多少平方米土地?

查看答案和解析>>

有下列命题:
(1)2004年10月1日既是国庆节,又是中秋节.
(2)10的倍数一定是5的倍数.
(3)梯形不是矩形.
其中使用逻辑连接词的命题有(  )

查看答案和解析>>

某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=3-
k
m+1
)(k为常数)满足:x=3-
k
m+1
,如果不搞促销活动,则该产品的年销售量只能是1万件.已知2004年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将该产品的利润y万元表示为年促销费用m万元的函数;
(2)该厂家促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

某市2003年共有1万辆燃油型公交车.有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:
(1)该市在2010年应该投入多少辆电力型公交车?
(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的
13

查看答案和解析>>

2004年10月28日到银行存入a元,若年利率为x,且按复利计算,到2013年10月28日可取回款(  )元.(复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.)

查看答案和解析>>

 

一.选择题

(1)D      (2)A     (3)B       (4)C       (5)B     (6)C

(7)B      (8)C     (9)A       (10)C      (11)B    (12)D

二.填空题

(13)4   (14)0.75   (15)9    (16)

三.解答题

(17)解:由

                             

得    又

于是 

      

(18)解:(Ⅰ)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.

  由①、③得  代入②得  27[P(C)]2-51P(C)+22=0.

解得  (舍去).

将     分别代入 ③、②  可得 

即甲、乙、丙三台机床各加工的零件是一等品的概率分别是

(Ⅱ)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,

则 

故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为

 

(19)(Ⅰ)证明  因为底面ABCD是菱形,∠ABC=60°,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

(Ⅱ)解  作EG//PA交AD于G,

由PA⊥平面ABCD.

知EG⊥平面ABCD.作GH⊥AC于H,连结EH,

则EH⊥AC,∠EHG即为二面角的平面角.

又PE : ED=2 : 1,所以

从而    

(Ⅲ)解法一  以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为

所以

设点F是棱PC上的点,

       令   得

解得      即 时,

亦即,F是PC的中点时,共面.

又  BF平面AEC,所以当F是棱PC的中点时,BF//平面AEC.

解法二  当F是棱PC的中点时,BF//平面AEC,证明如下,

由   知E是MD的中点.

连结BM、BD,设BDAC=O,则O为BD的中点.

所以  BM//OE.  ②

由①、②知,平面BFM//平面AEC.

又  BF平面BFM,所以BF//平面AEC.

证法二

因为 

         

所以  共面.

又 BF平面ABC,从而BF//平面AEC.

(20)解:(Ⅰ)

(i)当a=0时,令

上单调递增;

上单调递减.

(ii)当a<0时,令

上单调递减;

上单调递增;

上单调递减.

(Ⅱ)(i)当a=0时,在区间[0,1]上的最大值是

(ii)当时,在区间[0,1]上的最大值是.

(iii)当时,在区间[0,1]上的最大值是

(21)解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得   

     ①

设A、B两点的坐标分别是 x2是方程①的两根.

所以     

由点P(0,m)分有向线段所成的比为

又点Q是点P关于原点的对称点,

故点Q的坐标是(0,-m),从而.

               

               

所以 

(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).

  得

所以抛物线 在点A处切线的斜率为

设圆C的方程是

解之得

所以圆C的方程是 

即 

(22)(Ⅰ)证明:设点Pn的坐标是,由已知条件得

点Qn、Pn+1的坐标分别是:

由Pn+1在直线l1上,得 

所以    即 

(Ⅱ)解:由题设知 又由(Ⅰ)知

所以数列  是首项为公比为的等比数列.

从而 

(Ⅲ)解:由得点P的坐标为(1,1).

所以 

   

(i)当时,>1+9=10.

而此时 

(ii)当时,<1+9=10.

而此时