教材第57页的例1.数量关系比较简单.学生根据基本公式很容易写出函数关系式.此题实际上是利用了反比例函数的定义.同时也是要让学生学会分析问题的方法. 教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题.此题的实际背景较例1稍复杂些.目的是为了提高学生将实际问题抽象成数学问题的能力.掌握用函数观点去分析和解决问题的思路. 补充例题一是为了巩固反比例函数的有关知识.二是为了提高学生从图象中读取信息的能力.掌握数形结合的思想方法.以便更好地解决实际问题 查看更多

 

题目列表(包括答案和解析)

如图,八年级(上)教材第57页利用构造直角三角形和画弧的方法在数轴上找到了表示
2
的点A.试利用这个方法,在数轴上找出表示-
13
的点B.(保留画图痕迹)

查看答案和解析>>

19、七年级下学期数学教材第157页的问题3:某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,抽取一个容量为1000的样本进行调查.小丽同学根据各年龄段实际人口比例分配抽取的人数制成如下条形图:

请你帮助小丽再制作一个反映该地区实际人口比例情况的扇形图,并写出每一部分扇形角的度数:
72
180
108
度.

查看答案和解析>>

九年义务教育三年制初级中学教科书《代数》第三册第52页的例2是这样的:“解方程x4-6x2+5=0”.这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-6y+5=0…①,解这个方程得:y1=1,y2=5.当y=1时,x2=1,∴x=±1;当y=5时,x2=5,∴x=±
5
.所以原方程有四个根:x1=1,x2=-1,x3=
5
,x4=-
5

(1)在由原方程得到方程①的过程中,利用
法达到降次的目的,体现了转化的数学思想.
(2)解方程(x2-x)2-4(x2-x)-12=0时,若设y=x2-x,则原方程可化为

查看答案和解析>>

(2003•青岛)九年义务教育三年制初级中学教科书《代数》第三册第52页的例2是这样的:“解方程x4-6x2+5=0”.这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-6y+5=0…①,解这个方程得:y1=1,y2=5.当y=1时,x2=1,∴x=±1;当y=5时,x2=5,∴.所以原方程有四个根:x1=1,x2=-1,x3=,x4=-
(1)在由原方程得到方程①的过程中,利用    法达到降次的目的,体现了转化的数学思想.
(2)解方程(x2-x)2-4(x2-x)-12=0时,若设y=x2-x,则原方程可化为   

查看答案和解析>>

(2003•青岛)九年义务教育三年制初级中学教科书《代数》第三册第52页的例2是这样的:“解方程x4-6x2+5=0”.这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-6y+5=0…①,解这个方程得:y1=1,y2=5.当y=1时,x2=1,∴x=±1;当y=5时,x2=5,∴.所以原方程有四个根:x1=1,x2=-1,x3=,x4=-
(1)在由原方程得到方程①的过程中,利用    法达到降次的目的,体现了转化的数学思想.
(2)解方程(x2-x)2-4(x2-x)-12=0时,若设y=x2-x,则原方程可化为   

查看答案和解析>>


同步练习册答案