∵VB-CMN=VN-CMB.NE⊥平面CMB.∴S△CMN?h=S△CMB?NE. 查看更多

 

题目列表(包括答案和解析)

精英家教网一走廊拐角下的横截面如图所示,已知内壁FG和外壁BC都是半径为1m的四分之一圆弧,AB,DC分别与圆弧BC相切于B、C两点,EF∥AB,GH∥CD,且两组平行墙壁间的走廊宽度都是1m.
(1)若水平放置的木棒MN的两个端点M、N分别在外壁CD和AB上,且木棒与内壁圆弧相切于点P.设∠CMN=θ(rad),试用θ表示木棒MN和长度f(θ).
(2)若一根水平放置的木棒能通过该走廊拐角处,求木棒长度的最大值.

查看答案和解析>>

规定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整数,且
C
0
x
=1
,这是组合数
C
m
n
(n、m是正整数,且m≤n)的一种推广.
(1)求
C
3
-15
的值;
(2)设x>0,当x为何值时,
C
3
x
(
C
1
x
)
2
取得最小值?
(3)组合数的两个性质;①
C
m
n
=
C
n-m
n
;②
C
m
n
+
C
m-1
n
=
C
m
n+1
.是否都能推广到
C
m
x
(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.

查看答案和解析>>

已知M是正四面体ABCD棱AB的中点,N是棱CD的中点,则下列结论中,正确的个数有(  )
(1)MN⊥AB;            
(2)VA-MCD=VB-MCD;     
(3)平面CDM⊥平面ABN; 
(4)CM与AN是相交直线.

查看答案和解析>>

已知等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的前n项和为Tn,且{an}、{bn}满足条件:S4=4a3-2,Tn=2bn-2.
(Ⅰ)求公差d的值;
(Ⅱ)若对任意的n∈N*,都有Sn≥S5成立,求a1的取直范围;
(Ⅲ)若a1=-4,令cn=anbn,求数列{cn}的前n项和Vn

查看答案和解析>>

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M、N分别为AB、SB的中点.
(1)求二面角N-CM-B的余弦值;
(2)求点B到平面CMN的距离.

查看答案和解析>>


同步练习册答案