1.理解配方法,知道“配方 是一种常用的数学方法. 查看更多

 

题目列表(包括答案和解析)

27、阅读下面的材料并解答问题.
图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系.例如完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2等图形的面积表示:

(1)请写出图3所表示的代数恒等式:
(a+2b)(2a+b)=2a2+5ab+2b2

解决问题:
某钢铁加工厂现有足够的2×2,3×3的正方形和2×3的矩形下脚料A、B、C(如图所示),现从中各选取若干个下脚料焊接成不同的图形,请你在下面给出的方格纸中,按下列要求分别画出一种示意图(说明:下面给出的方格纸中,每个小正方形的边长均为1,拼出的图形,要求每两个图片之间既无缝隙,也无重叠,画图必须保留拼较的痕迹)
A、B、C、
(2)选取A型4块,B型两种图片1块,C型图片4块,在下面的图2中拼成一个正方形;
利用面积法去解,如图所示.

(3)选取A型3块,B型两种图片1块,C型图片若干块,在下面的图3中拼成一个长方形.

查看答案和解析>>

我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:
(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理;
(2)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=4,BC=3,求CD的长度.

查看答案和解析>>

我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题这种方法称为等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:

(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理;
(2)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC= 4,BC=3,求CD的长度.

查看答案和解析>>

我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题这种方法称为等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:

(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理;

(2)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC= 4,BC=3,求CD的长度.

 

查看答案和解析>>

我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题这种方法称为等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:

(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理;

(2)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC= 4,BC=3,求CD的长度.

 

(第23题图1)

 

(第23题图2)

 
 


查看答案和解析>>


同步练习册答案