等式的两边都乘以同一个数.所得结果仍是等式.即 如果a=b.那么ac=bc, 求方程的解的过程叫解方程 解一元一次方程的步骤: ①去分母 ②去括号 ③移项 ④合并同类项 ⑤系数化为1 以上5个步骤在解一元一次方程时要灵活应用. 问题2:某班同学在植树节时植樟树和白杨树共45棵.已知樟树苗每棵2元.白杨树苗每棵1元.购买这些树苗用了60元.问樟树苗.白杨树苗各买了多少棵? 设:樟树苗买了x棵.白杨树苗买了y棵.根据两种树苗总数为45棵.得 x+y=45. ① 又根据购买树苗的钱数是60元.得 2x+y=60. ② 上面得到的两个方程含有两个未知数(元).并且未知数的次数都是l.像这样的方程叫做二元一次方程. 这里的x.y既要满足树苗总数关系①.又要满足购买树苗钱数关系②.就是说它必须同时满足上面①.②两个方程.因此.我们把上面两个方程加上括号联合在一起.写成: 像上面这种由两个一次方程组成的.并且含有两个未知数的方程组叫做二元一次方程组. [典型例题] 例1. 解方程:-2= 解:去分母:5 去括号:5y-5-20=2y+4 5y-25=2y+4 移项: 5y-2y=25+4 合并同类项:3y=29 系数化为1: y= 例2. 已知关于x方程(m+2)xm-1+5=0是一元一次方程.求 的值. 分析:此题是求代数式的值.而代数式中含有唯一字母m.所以必须通过前面已知条件求出m.又因为(m+2)xm-1+5=0是一元一次方程.则m-1=1且m+2≠0得m=2.将m=2代入欲求的代数式.即可求得代数式中的值. 解:∵(m+2)xm-1+5=0是一元一次方程 ∴m-1=1且m+2≠0 ∴m=2 =m2-m-m2+m+m2+m =m2+m 把m=2代入得: m2+m=×22+2=3 注意.有些同学为计算简便.把欲求代数式中的分母除去这就错了.因为方程是等式.可以利用等式的性质,代数式不是等式.不能随意的扩大代数式中的每一项. 例3. 某同学去解方程-1在去分母时.方程右边的-1没有乘3.因而求得方程的解为x=2.试求a的值.并正确地解方程. 分析:这位同学在解题中出现的错误.是常见错误之一.实质上这位同学解的方程是:-1 ∴x=2应是方程-1的解 我们应先求a.再求原方程的解 解:这位同学实际解的方程为-1 把x=2代入得:3=2+a-1 ∴a=2 ∴原方程为:-1 ∵2x-1=x+2-3 2x-1=x-1 x=0 ∵a=2 ∴方程的解为x=0 例4. 某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0.8元.以后每天收0.5元.小明用身上的3.6元钱租了一张光盘.问他一共能租多少天? 解:设小明一共能租x天 由题意:0.8×2+0.5(x-2)=3.6 查看更多

 

题目列表(包括答案和解析)

45、不等式的两边都乘以或除以同一个
负数
,不等号方向改变.

查看答案和解析>>

不等式的两边都乘以(或除以)同一个正数,不等号的方向__________。

查看答案和解析>>

不等式的两边都乘以(或除以)同一个负数,不等号的方向__________。

查看答案和解析>>

不等式的两边都乘以(或除以)同一个负数,不等号的方向__________。

查看答案和解析>>

不等式的两边都乘以(或除以)同一个正数,不等号的方向__________.

查看答案和解析>>


同步练习册答案