经历观察.分析.欣赏和画图等活动,促进评价学生空间观念的形成. 温故知新 在平面内.将一个图形沿某个方向移动一定的距离.这样的图形运动称为 .平移不改变图形的 和 . 举一些生活中平移的实例. 学法指导 引领激活 回忆游乐园内的一些项目.如:旋转木马.荡秋千.小火车.滑梯-- 哪些是图形的平移与旋转.并进行初步分类? 范例点评 [例1] 做一做: 如图所示.△ABE沿射线XY的方向 平移一定距离后成为△CDF.找出图中存在 的平行且相等的三条线段. 解:AB与CD,AE与CF,BE与DF平行且相等. [例2] 图中的四个小三角形都是等边三角形. 边长为2cm.能通过平移△ABC得到其它 三角形吗?若能.请画出平移的方向.并 说出平移的距离. 解:△ECD.△FAE能通过平移得到. △ABC向右平移2cm得到△ECD, △ABC沿AB方向平移2cm可得到△FAE. 师生互动 课堂交流 如图所示的方格纸中.正方形ABCD要向右平移2格.再向下平移2格.得到正方形A′B′C′D′.则正方形ABCD与A′B′C′D′重叠部分面积为________, 误区警示 在平移过程中.对应线段也可能在一条直线上, 在平移过程中.对应点所连的线段也可能在一条直线上. 检测评估 查看更多

 

题目列表(包括答案和解析)

阅读理解题: 人们通过长期观察发现,如果早晨的天空中有棉絮状的高积云,那么午后常有雷雨降临,于是归纳出,午后雷雨临.像这种对现象的观察、分析,从特殊到一般地探索这类现象规律的思想方法称为归纳,在数学里,我们也常常用这种方法探求规律.同学们,你在平时学习、生活的交流中,有过这样的经历和体验吗?不妨试一试!

查看答案和解析>>

如图1、图2、图3、…、图n分别是⊙O的内接正三角形A1A2A3,正四边形A1A2A3A4、正五边形A1A2A3A4A5、…、正n边形A1A2A3∧An,点M、N分别是弧A1A2和A2A3上的点.且弧A1M=弧A2N,连接AnM、A1N相交于点P,
观察并分析:(1)∠A3PN=
60°
60°
;∠A4PN=
90°
90°
;∠AnPN=
(n-2)•180°
n
(n-2)•180°
n

查看答案和解析>>

问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点为顶点,可把原n边形分割成多少个互不重叠的小三角形?
问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手,通过观察、分析,最后归纳出结论:
探究一:以△ABC的三个顶点和它内部的一个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
如图(1),显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△ABC的三个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?

在探究一的基础上,我们可看作在图(1)△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图(1)分割成的某个小三角形内部,不妨假设点Q在△PAC内部,如图(2);另一种情况,点Q在图(1)分割成的小三角形的某条公共边上,不妨假设点Q在P上,如图(3);显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.
探究三:以△ABC的三个顶点和它内部的3个点,共6个点为顶点可把△ABC分割成
7
7
个互不重叠的小三角形.
探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个点为顶点可把△ABC分割成
3+2(m-1)或2m+1
3+2(m-1)或2m+1
个互不重叠的小三角形.
探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成
4+2(m-1)或2m+2
4+2(m-1)或2m+2
个互不重叠的小三角形.
问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点为顶点,可把△ABC分割成
n+2(m-1)或2m+n-
n+2(m-1)或2m+n-
个互不重叠的小三角形.
实际应用:以八边形的8个顶点和它内部的m个点,共(m+8)个点为顶点,可把八边形分割成2013个互不重叠的小三角形吗?若行,求出m的值;若不行,请说明理由.

查看答案和解析>>

观察、分析下面两个例题的计算方法:
例1:计算:(1
3
4
-
7
8
-
7
12
)÷(-
7
8
)+(-2)÷
3
4

解:原式=(1
3
4
-
7
8
-
7
12
)×(-
8
7
)+(-2)÷
3
4

=
7
4
×(-
8
7
)+(-
7
8
)×(-
8
7
)+(-
7
12
)×(-
8
7
)+(-2)×
4
3

=-2+1+
2
3
-
8
3
=-3
例2:计算:-1-[1-(1-0.5×
1
3
)]×[2-(-3)2]
解:原式=-1-[1-(1-
1
6
)]×(2-9)③
=-1-(1-1+
1
6
)×(2-9)④
=-1-
1
6
×(-7)=-1+
7
6
=
1
6

请回答以下问题:
(1)有理数的混合运算,运算顺序是如何规定的?
(2)例1中,步骤①到②,比先算括号里的简便吗?用的什么方法?
(3)例2中,步骤③到④,比先算括号里的简便吗?用的什么方法?
(4)学完“有理数”这一章后,你增长了哪些知识和能力?

查看答案和解析>>

(2012•邗江区一模)已知:正方形ABCD的边长为4,⊙O交正方形ABCD的对角线AC所在直线于点T,连接TO交⊙O于点S.

(1)如图1,当⊙O经过A、D两点且圆心O在正方形ABCD内部时,连接DT、DS.
①试判断线段DT、DS的数量关系和位置关系;    
②求AS+AT的值;
(2)如图2,当⊙O经过A、D两点且圆心O在正方形ABCD外部时,连接DT、DS.求AS-AT的值;
(3)如图3,延长DA到点E,使AE=AD,当⊙O经过A、E两点时,连接ET、ES.根据(1)、(2)计算,通过观察、分析,对线段
AS、AT的数量关系提出问题并解答.

查看答案和解析>>


同步练习册答案