教科书第90页――2.4.5.6题. 查看更多

 

题目列表(包括答案和解析)

下列说法:
6
是二次根式,但不是整式;
②方程x2-x-k=0的根为x1,2=
1+4k
2

③若ac<0,则方程ax2+bx+c=0方程必有实数根;
④课本第54页观察与猜想讨论了一元二次方程根与系数的关系,根据这一关系得方程x2-3x+5=0的两根和是3,两根积是5.
其中错误的有(  )

查看答案和解析>>

九年义务教育三年制初级中学教科书《代数》第三册第52页的例2是这样的:“解方程x4-6x2+5=0”.这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-6y+5=0…①,解这个方程得:y1=1,y2=5.当y=1时,x2=1,∴x=±1;当y=5时,x2=5,∴x=±
5
.所以原方程有四个根:x1=1,x2=-1,x3=
5
,x4=-
5

(1)在由原方程得到方程①的过程中,利用
法达到降次的目的,体现了转化的数学思想.
(2)解方程(x2-x)2-4(x2-x)-12=0时,若设y=x2-x,则原方程可化为

查看答案和解析>>

数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即“以形助数”.
如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=90°,CD⊥AB,D为垂足.易证得两个结论:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D为垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长.
(2)请你用数形结合的“以形助数”思想来解:设a、b、c、d都是正数,满足a:b=c:d,且a最大.求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)
精英家教网

查看答案和解析>>

(2004•广安)假期的一天上午,小明看一本课外书,他从第m页开始看到第n页结束,他这天上午看的书共有(  )

查看答案和解析>>

如图,七年级(下)教材第6页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是(  )

查看答案和解析>>


同步练习册答案