3.某电场的部分电场线如图所示.A.B是一带电粒子仅在电场力作用下运动轨迹上的两点.下列说法中正确的是 A.粒子一定是从B点向A点运动 查看更多

 

题目列表(包括答案和解析)

如图所示,半径为L1=2m的金属圆环内上、下两部分各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B1=
π
10
T.长度也为L1、电阻为R的金属杆ab,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a端做逆时针方向的匀速转动,角速度为ω=
π
10
rad/s.通过导线将金属杆的a端和金属环连接到图示的电路中(连接a端的导线与圆环不接触,图中的定值电阻R1=R,滑片P位于R2的正中央,R2=4R),图中的平行板长度为L2=2m,宽度为d=2m.当金属杆运动到图示位置时,在平行板左边缘中央处刚好有一带电粒子以初速度vo=0.5m/s向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B2=2T,左边界为图中的虚线位置,右侧及上下范围均足够大.(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射等影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力.提示:导体棒以某一端点为圆心匀速转动切割匀强磁场时产生的感应电动势为E=
Bl2ω
2
)试分析下列问题:
(1)从图示位置开始金属杆转动半周期的时间内,两极板间的电势差UMN
(2)带电粒子飞出电场时的速度方向与初速度方向的夹角θ;
(3)带电粒子在电磁场中运动的总时间t

查看答案和解析>>

如图所示,半径为L1 = 2 m的金属圆环内上、下两部分各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B1 = 10/π T.长度也为L1、电阻为R的金属杆ab,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a端做逆时针方向的匀速转动,角速度为ω = π/10 rad/s.通过导线将金属杆的a端和金属环连接到图示的电路中(连接a端的导线与圆环不接触,图中的定值电阻R1 = R,滑片P位于R2的正中央,R2 = 4R),图中的平行板长度为L2 = 2 m,宽度为d = 2 m.当金属杆运动到图示位置时,在平行板左边缘中央处刚好有一带电粒子以初速度vo = 0.5 m/s向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B2 = 2 T,左边界为图中的虚线位置,右侧及上下范围均足够大.(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射等影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力.提示:导体棒以某一端点为圆心匀速转动切割匀强磁场时产生的感应电动势为E=BL2ω/2)试分析下列问题:

(1)从图示位置开始金属杆转动半周期的时间内,两极板间的电势差UMN

(2)带电粒子飞出电场时的速度方向与初速度方向的夹角θ;

(3)带电粒子在电磁场中运动的总时间t

查看答案和解析>>

如图所示,半径为L1=2m的金属圆环内上、下两部分各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B1=T.长度也为L1、电阻为R的金属杆ab,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a端做逆时针方向的匀速转动,角速度为ω=rad/s.通过导线将金属杆的a端和金属环连接到图示的电路中(连接a端的导线与圆环不接触,图中的定值电阻R1=R,滑片P位于R2的正中央,R2=4R),图中的平行板长度为L2=2m,宽度为d=2m.当金属杆运动到图示位置时,在平行板左边缘中央处刚好有一带电粒子以初速度vo=0.5m/s向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B2=2T,左边界为图中的虚线位置,右侧及上下范围均足够大.(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射等影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力.提示:导体棒以某一端点为圆心匀速转动切割匀强磁场时产生的感应电动势为E=)试分析下列问题:
(1)从图示位置开始金属杆转动半周期的时间内,两极板间的电势差UMN
(2)带电粒子飞出电场时的速度方向与初速度方向的夹角θ;
(3)带电粒子在电磁场中运动的总时间t

查看答案和解析>>

如图所示,半径为L1 =" 2" m的金属圆环内上、下两部分各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B1 =" 10/π" T.长度也为L1、电阻为R的金属杆ab,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a端做逆时针方向的匀速转动,角速度为ω =" π/10" rad/s.通过导线将金属杆的a端和金属环连接到图示的电路中(连接a端的导线与圆环不接触,图中的定值电阻R1 = R,滑片P位于R2的正中央,R2 = 4R),图中的平行板长度为L2 =" 2" m,宽度为d =" 2" m.当金属杆运动到图示位置时,在平行板左边缘中央处刚好有一带电粒子以初速度vo =" 0.5" m/s向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B2 =" 2" T,左边界为图中的虚线位置,右侧及上下范围均足够大.(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射等影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力.提示:导体棒以某一端点为圆心匀速转动切割匀强磁场时产生的感应电动势为E=BL2ω/2)试分析下列问题:
(1)从图示位置开始金属杆转动半周期的时间内,两极板间的电势差UMN
(2)带电粒子飞出电场时的速度方向与初速度方向的夹角θ;
(3)带电粒子在电磁场中运动的总时间t

查看答案和解析>>

精英家教网如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,∠AOB=90°,OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反.带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=a,不计粒子的重力.求:
(1)匀强电场的电场强度E的大小;
(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;
(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内.由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为θ,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.

查看答案和解析>>

 

1.AC    2.A  3.B  4.BC  5.B  6.B  

7.ACD   8.A   9.A  10.C   11.A      12.D  13.AB  

14.(1) 1.50V,1.0Ω, 

(2)10.195mm

(3) 100Ω   实物连线如图20。

 

15.(1) A2   V1   R1    E2   ;(2) 

1.5   11.5    0.78

16.解:(1)设小球第一次到达最低点速度为v则由动能定律可得:

            (3分)           (3分)

解得q=7.5×10-2C, 带负电.     (3分)

(2)根据向心力公式得:  (3分)    解得F=0.06N  (3分)

 

17.画力分析图如答图。

    设金属棒有下滑趋势时,变阻器取值R1,则有:

     …………①

    解出: …………②

    同理,金属棒有上滑趋势时, 有…………③

    解出: …………④    即R0取值范围  …………⑤

18.解:根据平衡条件可得,( 8 分)

所以A球的质量增为8m时,能使AB间距离减小为x/2. ( 6 分)

 

19.(16分)解:(1)由,  得      ②(3分)

由几何关系知,粒子从A点到O点的弦长为,由题意

     ③(3分)

氘核粒子的比荷    ④(2分)

由几何关系   ,         ⑤(2分)

由以上各式得        ⑥(2分)

(2)粒子从O点到A点所经历时间    ⑦(2分)

O点到P点所经历时间    ⑧(2分)

 

20.小球在沿杆向下运动时,受力情况如图所示:

在水平方向:N=qvB ,所以摩擦力f=μN=μqvB

当小球做匀速运动时:qE=f=μqvbB

小球在磁场中做匀速圆周运动时,

,所以 , 小球从a运动到b的过程中,由动能定理得:

,  所以,则

 

 

 


同步练习册答案