(三)课程学习目标 1.掌握平行四边形.矩形.菱形.正方形.梯形的概念.了解它们之间的关系, 2.探索并掌握平行四边形.矩形.菱形.正方形.等腰梯形的有关性质和常用判别方法.并能运用这些知识进行有关的证明和计算, 3.探索并了解线段.矩形.平行四边形.三角形的重心的物理意义, 4.通过经历特殊四边形性质的探索过程.丰富学生从事数学活动的经验和体验.进一步培养学生的合情推理能力, 5.结合特殊四边形性质和判定方法以及相关问题的证明.进一步培养和发展学生的逻辑思维能力和推理论证的表达能力, 6.通过分析四边形与特殊四边形.以及平行四边形与各种特殊平行四边形概念之间的联系与区别.使学生认识到特殊与一般的关系.从而体会事物之间总是互相联系又是互相区别的.进一步培养学生的辩证唯物主义观点. 查看更多

 

题目列表(包括答案和解析)

24、如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长分别为1和2,另一种纸片的两条直角边长都为2.图a、图b、图c是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请用三种方法将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,三种方法所拼得的平行四边形(非矩形)的周长互不相等,并把你所拼得的图形按实际大小画在图a、图b、图c的方格纸上.
要求:(1)所画图形各顶点必须与方格纸中的小正方形顶点重合;
(2)画图时,要保留四块直角三角形纸片的拼接痕迹.

查看答案和解析>>

6、如图,?ABCD中,E、F和G、H分别是AD和BC的三等分点,则图中平行四边形的个数是(  )

查看答案和解析>>

8、下列有关重心的说法错误的是(  )

查看答案和解析>>

让我们一起来探索平面直角坐标系中平行四边形的顶点的坐标之间的关系.
第一步:数轴上两点连线的中点表示的数.自己画一个数轴,如果点A、B分别表示-2、4,则线段AB的中点M表示的数是
1
1
. 再试几个,我们发现:数轴上连接两点的线段的中点所表示的数是这两点所表示数的平均数.
第二步;平面直角坐标系中两点连线的中点的坐标(如图①)为便于探索,我们在第一象限内取两点A(x1,y1),B(x2,y2),取线段AB的中点M,分别作A、B到x轴的垂线段AE、BF,取EF的中点N,则MN是梯形AEFB的中位线,故MN⊥x轴,利用第一步的结论及梯形中位线的性质,我们可以得到点M的坐标是(
x1+x2
2
x1+x2
2
y1+y2
2
y1+y2
2
 )(用x1,y1,x2,y2表示),AEFB是矩形时也可以.我们的结论是:平面直角坐标系中连接两点的线段的中点的横(纵)坐标等于这两点的横(纵)坐标的平均数.
第三步:平面直角坐标系中平行四边形的顶点坐标之间的关系(如图②)在平面直角坐标系中画一个平行四边形ABCD,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),则其对角线交点Q的坐标可以表示为Q(
x1+x3
2
x1+x3
2
y1+y3
2
y1+y3
2
),也可以表示为Q(
x2+x4
2
x2+x4
2
y2+y4
2
y2+y4
2
 ),经过比较,我们可以分别得出关于x1,x2,x3,x4及,y1,y2,y3,y4的两个等式是
x1+x3=x2+x4
x1+x3=x2+x4
y1+y3=y2+y4
y1+y3=y2+y4
. 我们的结论是:平面直角坐标系中平行四边形的对角顶点的横(纵)坐标的
和相等
和相等

查看答案和解析>>

(2012•南岗区三模)如图,在平行四边形ABCD中,AD∥BC,AB∥CD,AB=6cm,AD=8cm,DE平分∠ADC交BC边于点E,则线段BE的长度是
2
2
cm.

查看答案和解析>>


同步练习册答案