如图,在边长为a的正方形中减去一个边长为b的小正方形,把剩下的部分拼成一个梯形,分别计算这两个图形的阴影部分的面积,可以验证一个等式,请写出这个等式 查看更多

 

题目列表(包括答案和解析)

邻边不相等的矩形纸片,剪去一个正方形,余下一个四边形,称为第一次操作;在余下的四边形中减去一个正方形,又余下一个四边形,称为第二次操作;…,以此类推,若第n次操作后余下的四边形是正方形,则称原矩形是n阶矩形.如图1,矩形ABCD中,若AB=1,AD=2,则矩形ABCD是1阶矩形.
探究:(1)两边分别是2和3的矩形是
2
2
阶矩形;
(2)小聪为了剪去一个正方形,进行如下的操作:如图2,把矩形ABCD沿着BE折叠(点E在AD上),使点A落在BC的点F处,得到四边形ABFE.请证明四边形ABFE是正方形.
(3)操作、计算:
①已知矩形的两边分别是2,a(a>2),而且它是3阶矩形,请画出此矩形及裁剪线的示意图,并在示意图下方直接写出a的值;
②已知矩形的两邻边长为a,b,(a>b),且满足a=5b+m,b=4m.请直接写出矩形是几阶矩形.

查看答案和解析>>

问题探究.
用如图所示正方形纸板制作一个无盖的长方体盒子,可在正方体的四角减去相同的正方形,剩余部分即可做成一个无盖的长方体形盒子.
(1)设正方形纸的边长为a,减去的小正方形的边长为x,请用a与x表示这个无盖长方体形盒子的容积;
(2)把正方形的纸板换成长为a,宽为b的长方形纸板,怎样做一个无盖长方体形盒子?画图说明你的做法;
(3)把(2)中做的长方体形盒子的容积用代数式表示出来;
(4)比较(1)和(3)的结果,说说它们的区别和联系.

查看答案和解析>>

问题探究.
用如图所示正方形纸板制作一个无盖的长方体盒子,可在正方体的四角减去相同的正方形,剩余部分即可做成一个无盖的长方体形盒子.
(1)设正方形纸的边长为a,减去的小正方形的边长为x,请用a与x表示这个无盖长方体形盒子的容积;
(2)把正方形的纸板换成长为a,宽为b的长方形纸板,怎样做一个无盖长方体形盒子?画图说明你的做法;
(3)把(2)中做的长方体形盒子的容积用代数式表示出来;
(4)比较(1)和(3)的结果,说说它们的区别和联系.

查看答案和解析>>

问题探究.

用如图所示正方形纸板制作一个无盖的长方体盒子,可在正方体的四角减去相同的正方形,剩余部分即可做成一个无盖的长方体形盒子.

(1)设正方形纸的边长为a,减去的小正方形的边长为x,请用a与x表示这个无盖长方体形盒子的容积;

(2)把正方形的纸板换成长为a,宽为b的长方形纸板,怎样做一个无盖长方体形盒子?画图说明你的做法;

(3)把(2)中做的长方体形盒子的容积用代数式表示出来;

(4)比较(1)和(3)的结果,说说它们的区别和联系.

查看答案和解析>>

“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是数学公式,求这个三角形的面积.
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:数学公式
思维拓展:已知△ABC的边长分别为数学公式,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.

查看答案和解析>>


同步练习册答案