1.用钢笔或圆珠笔直接答在试题卷中. 查看更多

 

题目列表(包括答案和解析)

某学校举办“有奖答题”活动,每位选手最多答10道题,每道题对应1份奖品,每份奖品价值相同.若选手答对一道题,则得到该题对应的奖品.答对一道题之后可选择放弃答题或继续答题,若选择放弃答题,则得到前面答对题目所累积的奖品;若选择继续答题,一旦答错,则前面答对题目所累积的奖品将全部送给现场观众,结束答题.假设某选手答对每道题的概率均为
23
,且各题之间答对与否互不影响.已知该选手已经答对前6道题.
(Ⅰ)如果该选手选择继续答题,并在最后4道题中,在每道题答对后都选择继续答题.
(ⅰ)求该选手第8题答错的概率;
(ⅱ)记该选手所获得的奖品份数为ξ,写出随机变量ξ的所有可能取值并求ξ的数学期望Eξ;
(Ⅱ)如果你是该选手,你是选择继续答题还是放弃答题?若继续答题你将答到第几题?请用概率或统计的知识给出一个合理的解释.

查看答案和解析>>

某学校举办“有奖答题”活动,每位选手最多答10道题,每道题对应1份奖品,每份奖品价值相同.若选手答对一道题,则得到该题对应的奖品.答对一道题之后可选择放弃答题或继续答题,若选择放弃答题,则得到前面答对题目所累积的奖品;若选择继续答题,一旦答错,则前面答对题目所累积的奖品将全部送给现场观众,结束答题.假设某选手答对每道题的概率均为,且各题之间答对与否互不影响.已知该选手已经答对前6道题.
(Ⅰ)如果该选手选择继续答题,并在最后4道题中,在每道题答对后都选择继续答题.
(ⅰ)求该选手第8题答错的概率;
(ⅱ)记该选手所获得的奖品份数为ξ,写出随机变量ξ的所有可能取值并求ξ的数学期望Eξ;
(Ⅱ)如果你是该选手,你是选择继续答题还是放弃答题?若继续答题你将答到第几题?请用概率或统计的知识给出一个合理的解释.

查看答案和解析>>

答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、班级和考号填写在答题卷上。

查看答案和解析>>

小华到某文具店想买2支钢笔或3支圆珠笔,现知6支钢笔和3支圆珠笔的价格之和大于24元,而4支钢笔和5支圆珠笔的价格之和小于22元,若设2支钢笔的价格为元,3支圆珠笔的价格为元,则         (    )

    A.            B.             C.            D.不确定

 

查看答案和解析>>

必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。

第Ⅰ卷   选择题(共50分)

一、选择题(本大题共10小题,每小题5分,满分50分)

1、设全集U={是不大于9的正整数},{1,2,3 },{3,4,5,6}则图中阴影部分所表示的集合为(  )

       A.{1,2,3,4,5,6}    B. {7,8,9}

       C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

2、计算复数(1-i)2等于(  )

A.0                B.2              C. 4i                   D. -4i

查看答案和解析>>

一、选择题:

1―5:ACCCB  6―10:CDACD   11―12:BC  

二、填空题:

13.2  14.   15.5   16.①   ②球的体积函数的导数等于球的表面积函数

三、解答题:

17.(本小题满分12分)

解:(I)……………………2分

……………………4分

       ……………………………………………………………………5分

   (II)B均为锐角且B<A

    又C为钝角

    ∴最短边为b……………………………………………………7分

    由,解得………………………………9分

    又…………………………12分

18.(本小题满分12分)

       解:(I)

………………………………3分

…………………………………………………4分

   (II)令.

    若时,当时,函数

    …………………………………………………………6分

    若时,当时,函数

    …………………………………………………………8分

   (III)由

    确定单调递增的正值区间是

    由

    确定单调递减的正值区间是;………10分

    综上,当时,函数的单调递增区间为.

    当时,函数的单调递增区间为.……12分

       注:①

     的这些

等价形式中,以最好用. 因为复合函数

的中间变量是增函数,对求的单调区间来说,

只看外层函数的单调性即可.否则,利用的其它形

式,例如求单调区间是非常容易出错的. 同学们可以尝试做一

的其它形式,认真体会,比较优劣!

       ②今后遇到求类似的单调区间问题,应首先通过诱导公式将转化为标准形

式:(其中A>0,ω>0),然后再行求

解,保险系数就大了.

19.(本小题满分12分)

       解:(I)由已知……………………1分

    …………3分

由已知

∴公差d=1…………………………………………………………4分

……………………………………………………6分

   (II)设…………………………7分

    当时,k的增函数,也是k的增函数.

    ………………………………10分

    又

    *不存在,使…………………………………12分

20.(本小题满分12分)

解:恒成立

只需小于的最小值…………………………………………2分

而当时,≥3……………………………………………4分

……………………………………………………6分

存在极大值与极小值

有两个不等的实根…………………………8分

…………………………………………………………10分

要使“PQ”为真,只需

故m的取值范围为[2,6].…………………………………………………12分

21.(本小题满分12分)

解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元………1分

       依题意可得约束条件:

 

       利润目标函数…………(7分)                            

如图,作出可行域,作直线,把直线l向右上方平移至l1位置,直线经过可行域上的点M,且与原点距离最大,此时取最大值.…………10分

       解方程组,得M(20,24)

故生产甲种产品20t,乙种产品24 t,才能使此工厂获得最大利润.…………12分

22.(本小题满分14分)

解:(Ⅰ)依题意

      =5n-4    ……………………3分

(Ⅱ)(1)由

即 

    ……………………6分

即      

是以为首项,为公差的等差数列  ………………8分

(2)由(1)得

    ………………10分

       ①

∴2  ②

①-②得  

               =

  ………………14分