题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一、选择题:
1―5:ACCCB 6―10:CDACD 11―12:BC
二、填空题:
13.2 14.
15.5
16.①
②球的体积函数的导数等于球的表面积函数
三、解答题:
17.(本小题满分12分)
解:(I)
……………………2分
……………………4分
……………………………………………………………………5分
(II)
、B均为锐角且B<A
又C为钝角
∴最短边为b……………………………………………………7分
由
,解得
………………………………9分
又
…………………………12分
18.(本小题满分12分)
解:(I)

………………………………3分
故
…………………………………………………4分
(II)令
.
若
时,当
时,函数
…………………………………………………………6分
若
时,当
时,函数
…………………………………………………………8分
(III)由
确定
单调递增的正值区间是
;
由
确定
单调递减的正值区间是
;………10分
综上,当
时,函数
的单调递增区间为
.
当
时,函数
的单调递增区间为
.……12分
注:①
的这些
等价形式中,以
最好用. 因为复合函数
的中间变量
是增函数,对求
的单调区间来说,
只看外层函数
的单调性即可.否则,利用
的其它形
式,例如
求单调区间是非常容易出错的. 同学们可以尝试做一
下
的其它形式,认真体会,比较优劣!
②今后遇到求类似
的单调区间问题,应首先通过诱导公式将
转化为标准形
式:
(其中A>0,ω>0),然后再行求
解,保险系数就大了.
19.(本小题满分12分)
解:(I)由已知
……………………1分
…………3分
由已知
∴公差d=1…………………………………………………………4分

……………………………………………………6分
(II)设
…………………………7分
当
时,
是k的增函数,
也是k的增函数.
………………………………10分
又
不存在
,使
…………………………………12分
20.(本小题满分12分)
解:
恒成立
只需
小于
的最小值…………………………………………2分
而当
时,
≥3……………………………………………4分
……………………………………………………6分
存在极大值与极小值
有两个不等的实根…………………………8分

或
…………………………………………………………10分
要使“P且
Q”为真,只需
故m的取值范围为[2,6].…………………………………………………12分
21.(本小题满分12分)
解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元………1分
依题意可得约束条件:
|