(三)小结与扩展 教师请学生总结:在这类实际应用题中.都是直接或间接地把问题放在直角三角形中.虽然有一些专业术语.但要明确各术语指的什么元素.要善于发现直角三角形.用三角函数等知识解决问题. 利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形.转化为解直角三角形的问题), (2)根据条件的特点.适当选用锐角三角函数等去解直角三角形, 查看更多

 

题目列表(包括答案和解析)

近年来,万州区教委在九年义务教育阶段实施“变革课堂”改革实验,推动高效卓越课堂,让学生在课堂教学中体验自主学习、合作探究、共同进步的教育理念,营造宽松、民主、活跃的生态课堂,成绩显著.不少学校真正体现了学生成为学习的主体,教师为主导的学习过程,某校八年级为了解学生课堂发言情况,对该年级部分学生某一天在课堂上发言的次数进行了抽查统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图.已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:

(1)根据给定条件直接写出B组发言人数是多少?
(2)求C组的发言人数,补全直方图;
(3)该年级共有学生500人,请估计全年级在这一天里发言次数不少于12次的人数.
  发言次数n
A 0≤n<3
B 3≤n<6
C 6≤n<9
D 9≤n<12
E 12≤n<15
F 15≤n<18

查看答案和解析>>

逆向思维的妙用
看完这个标题,你可能会问:“什么是逆向思维呀?”逆向思维,是指用来思考的一种思维方式,用对立的、看上去似乎不可能的办法解决问题的思维方法.利用这种思维方法,可以巧妙地解决一些我们正常思维所不能解决的问题.比如,我们在解下面的题目时,就可以应用这种思维方法.
小远买1角钱的邮票和2角钱的邮票共100张,一共花了17元钱.他买了1角和2角的邮票各多少张?
解这一题目,假设买来的100张都是2角邮票,那么总钱数应为:2×100-200(角)=20(元).可实际上小远只花了17元钱,比假设少3元钱,这是因为其中有1角钱的邮票.若有一张1角邮票,总钱数就相差1角.由此可求出1角邮票张数为:3元=30角,30÷1=30(张).2角邮票张数为:100-30=70(张).
请你用这种方法解答下面的题目:三年级的46名同学去划船,准备了可乘6人的船和可乘4人的船共10只.如果所有的学生恰好分配在这10只船上而没有空位,那么大船和小船各几只?

查看答案和解析>>

阅读下列材料:“思想创新是中国共产党革命、建设与执政经验的历史总结。”“在中国共产党的历史上,思想创新是使我们克服一个又一个困难、战胜一次又一次挑战,从而从各胜利走向另一个胜利的基本保证什么时候思想僵化了,跟不上形势的变化,什么时候就会造成损失,付出代价,陷于被动局面;相反,什么时候能够面对国情,实事求是,什么时候就能使中国革命与建设事业顺利发展。” (11分)
请回答:
(1)在20世纪中国共产党革命、建设的创新中产生的两大理论是什么?(2分)
(2)两大理论解决的主要问题和精髓各是什么?(6分)
(3)简要分析两大理论产生的共同特点。(3分)

查看答案和解析>>

近年来,万州区教委在九年义务教育阶段实施“变革课堂”改革实验,推动高效卓越课堂,让学生在课堂教学中体验自主学习、合作探究、共同进步的教育理念,营造宽松、民主、活跃的生态课堂,成绩显著.不少学校真正体现了学生成为学习的主体,教师为主导的学习过程,某校八年级为了解学生课堂发言情况,对该年级部分学生某一天在课堂上发言的次数进行了抽查统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图.已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
作业宝
(1)根据给定条件直接写出B组发言人数是多少?
(2)求C组的发言人数,补全直方图;
(3)该年级共有学生500人,请估计全年级在这一天里发言次数不少于12次的人数.

 发言次数n
A0≤n<3
B3≤n<6
C6≤n<9
D9≤n<12
E12≤n<15
F15≤n<18

查看答案和解析>>

1与0交替排列,组成下面形式的一串数101,10101,1010101,101010101,…,请你回答:在这串数中有多少个质数?并证明你的结论.

查看答案和解析>>


同步练习册答案