14.等轴双曲线xy = k的渐近线方程为 . 查看更多

 

题目列表(包括答案和解析)

精英家教网已知等轴双曲线C的两个焦点F1、F2在直线y=x上,线段F1F2的中点是坐标原点,且双曲线经过点(3,
3
2
).
(1)若已知下列所给的三个方程中有一个是等轴双曲线C的方程:①x2-y2=
27
4
;②xy=9;③xy=
9
2
.请确定哪个是等轴双曲线C的方程,并求出此双曲线的实轴长;
(2)现要在等轴双曲线C上选一处P建一座码头,向A(3,3)、B(9,6)两地转运货物.经测算,从P到A、从P到B修建公路的费用都是每单位长度a万元,则码头应建在何处,才能使修建两条公路的总费用最低?
(3)如图,函数y=
3
3
x+
1
x
的图象也是双曲线,请尝试研究此双曲线的性质,你能得到哪些结论?(本小题将按所得到的双曲线性质的数量和质量酌情给分)

查看答案和解析>>

已知等轴双曲线C的两个焦点F1、F2在直线y=x上,线段F1F2的中点是坐标原点,且双曲线经过点(3,).
(1)若已知下列所给的三个方程中有一个是等轴双曲线C的方程:①x2-y2=;②xy=9;③xy=.请确定哪个是等轴双曲线C的方程,并求出此双曲线的实轴长;
(2)现要在等轴双曲线C上选一处P建一座码头,向A(3,3)、B(9,6)两地转运货物.经测算,从P到A、从P到B修建公路的费用都是每单位长度a万元,则码头应建在何处,才能使修建两条公路的总费用最低?
(3)如图,函数y=x+的图象也是双曲线,请尝试研究此双曲线的性质,你能得到哪些结论?(本小题将按所得到的双曲线性质的数量和质量酌情给分)

查看答案和解析>>

已知等轴双曲线C的两个焦点F1、F2在直线y=x上,线段F1F2的中点是坐标原点,且双曲线经过点(3,).
(1)若已知下列所给的三个方程中有一个是等轴双曲线C的方程:①x2-y2=;②xy=9;③xy=.请确定哪个是等轴双曲线C的方程,并求出此双曲线的实轴长;
(2)现要在等轴双曲线C上选一处P建一座码头,向A(3,3)、B(9,6)两地转运货物.经测算,从P到A、从P到B修建公路的费用都是每单位长度a万元,则码头应建在何处,才能使修建两条公路的总费用最低?
(3)如图,函数y=x+的图象也是双曲线,请尝试研究此双曲线的性质,你能得到哪些结论?(本小题将按所得到的双曲线性质的数量和质量酌情给分)

查看答案和解析>>

已知等轴双曲线C的两个焦点F1、F2在直线y=x上,线段F1F2的中点是坐标原点,且双曲线经过点(3,).
(1)若已知下列所给的三个方程中有一个是等轴双曲线C的方程:①x2-y2=;②xy=9;③xy=.请确定哪个是等轴双曲线C的方程,并求出此双曲线的实轴长;
(2)现要在等轴双曲线C上选一处P建一座码头,向A(3,3)、B(9,6)两地转运货物.经测算,从P到A、从P到B修建公路的费用都是每单位长度a万元,则码头应建在何处,才能使修建两条公路的总费用最低?
(3)如图,函数y=x+的图象也是双曲线,请尝试研究此双曲线的性质,你能得到哪些结论?(本小题将按所得到的双曲线性质的数量和质量酌情给分)

查看答案和解析>>

已知中心在坐标原点,坐标轴为对称轴的椭圆C和等轴双曲线C1,点(
5
,-1)
在曲线C1上,椭圆C的焦点是双曲线C1的顶点,且椭圆C与y轴正半轴的交点M到直线x-
3
y-2=0
的距离为4.
(Ⅰ)求双曲线C1和椭圆C的标准方程;
(Ⅱ)直线x=2与椭圆C相交于P、Q两点,A、B是椭圆上位于直线PQ两侧的两动点,若直线AB的斜率为
1
2
,求四边形APBQ面积的最大值.

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

C

A

C

B

C

C

B

B

C

 

二、填空题

13.()  14.x=0或y=0     15.4     16.2/3    17.20   18.①④

 

三、解答题

19.解:A(―4,2)关于直线对称的点为,因为直线的平分线,可以点在直线上,故直线的方程是,由,则是以为直角的三角形,10

 

20.解:由,设双曲线方程为,椭圆方程为,它们的焦点,则

*,又双曲线方程为,椭圆方程为

 

21.解:,设椭圆方程为①,设过的直线方程为②,将②代入①得③,设的中点为代入,由③,解得

 

22.解:⑴设直线方程为:代入,得

,另知直线与半圆相交的条件为,设,则,点位于的右侧,应有,即(亦可求出的横坐标

⑵若为正,则点到直线距离

矛盾,在⑴条件下不可能是正△.

 

文本框: F223.⑴由题意设椭圆方程为:,则解得: ,所以椭圆方程为:

⑵设“左特征点”,设的平分线,,下面设直线的方程为,代入得:代入上式得解得

⑶椭圆的“左特征点”M是椭圆的左准线和x轴的交点证明如下:

证明:设椭圆的左准线与x轴相交于点M,过点A、B分别作的垂线,垂足分别为点C、D。据椭圆第二定义得

,∴

均为锐角,∴

。∴的平分线。故点为椭圆的“左特征点”。


同步练习册答案