6.已知正数x.y满足等式x+y-2xy+4=0.则A.xy的最大值是2.且x+y的最小值为4 B.xy的最小值是4.且x+y的最大值为4C.xy的最大值是2.且x+y的最大值为4 D.xy的最小值是4.且x+y的最小值为4 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的前n项和为Sn,点(n,)在直线y=x+上;数列{bn}满足bn+2-2bn+1-bn=0(n∈N*),且b3=11,它的前9项和为153.

(1)求数列{an}、{bn}的通项公式;

(2)设cn,数列{cn}的前n项和为Tn,求使不等式Tn对一切n∈N*都成立的最大正整数k的值;

查看答案和解析>>

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.

(1)若x2-1比1远离0,求x的取值范围;

(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab

(3)已知函数f(x)的定义域.任取x∈D,f(x)等于sinx和cosx中远离0的那个值.写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

查看答案和解析>>

若实数xym满足|xm|<|ym|,则称xy接近m

(1)若x21比3接近0,求x的取值范围;

(2)对任意两个不相等的正数ab,证明:a2b+ab2a3b3接近2ab

(3)已知函数f(x)的定义域D={x|xk∈Z,x∈R}.任取x∈Df(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

查看答案和解析>>

已知函数f(t)对任意实数x、y都有:f(x+y)=f(x)+f(y)+3xy(x+y+2)+3,且f(1)=1.

(1)求f(0)、f(-1)、f(2)的值;

(2)若t为正整数,求f(t)的表达式.

(3)满足条件f(t)=t的所有整数t能否构成等差数列?若能构成等差数列,求出此数列;若不能构成等差数列,请说明理由.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c的图像的顶点坐标是(,-),且f(3)=2

(Ⅰ)求y=f(x)的表达式,并求出f(1),f(2)的值;

(Ⅱ)数列{an},{bn},若对任意的实数x都满足g(x)·f(x)+anx+bn=xn+1,n∈N*,其中g(x)是定义在实数R上的一个函数,求数列{an}、{bn}的通项公式;

(Ⅲ)设圆Cn:(x-an)2+(y-bn)2,若圆Cn与圆Cn+1外切,{rn}是各项都是正数的等比数列,记Sn是前n个圆的面积之和,求.(n∈N*)

查看答案和解析>>

一、选择题

1.B  2.A  3.C  4.B  5.B  6.D  7.C  8.C  9.D  10.A

二、填空题

11.  12.  13.-6  14.  15.①②③④

三、解答题

16.解:⑴

                                                                                                                  3分

=1+1+2cos2x=2+2cos2x=4cos2x

∵x∈[0,]  ∴cosx≥0

=2cosx                                                                                                     6分

⑵ f (x)=cos2x-?2cosx?sinx=cos2x-sin2x

      =2cos(2x+)                                                                                            8分

∵0≤x≤  ∴  ∴  ∴

,当x=时取得该最小值

 ,当x=0时取得该最大值                                                                    12分

17.由题意知,在甲盒中放一球概率为时,在乙盒放一球的概率为                  2分

①当n=3时,x=3,y=0的概率为                                                 4分

②当n=4时,x+y=4,又|x-y|=ξ,所以ξ的可能取值为0,2,4

(i)当ξ=0时,有x=2,y=2,它的概率为                                      4分

(ii)当ξ=2时,有x=3,y=1或x=1,y=3

   它的概率为

(iii)当ξ=4时,有x=4,y=0或x=0,y=4

   它的概率为

故ξ的分布列为

ξ

0

2

4

10分

p

∴ξ的数学期望Eξ=                                                             12分

18.解:⑴证明:在正方形ABCD中,AB⊥BC

又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

同理CD⊥PA  ∴PA⊥面ABCD    4分

⑵在AD上取一点O使AO=AD,连接E,O,

则EO∥PA,∴EO⊥面ABCD 过点O做

OH⊥AC交AC于H点,连接EH,则EH⊥AC,

从而∠EHO为二面角E-AC-D的平面角                                                             6分

在△PAD中,EO=AP=在△AHO中∠HAO=45°,

∴HO=AOsin45°=,∴tan∠EHO=

∴二面角E-AC-D等于arctan                                                                    8分

⑶当F为BC中点时,PF∥面EAC,理由如下:

∵AD∥2FC,∴,又由已知有,∴PF∥ES

∵PF面EAC,EC面EAC  ∴PF∥面EAC,

即当F为BC中点时,PF∥面EAC                                                                         12分

19.⑴据题意,得                                                4分

                                                                          5分

⑵由⑴得:当5<x<7时,y=39(2x3-39x2+252x-535)

当5<x<6时,y'>0,y=f (x)为增函数

当6<x<7时,y'<0,y=f (x)为减函数

∴当x=6时,f (x)极大值=f (16)=195                                                                      8分

当7≤x<8时,y=6(33-x)∈(150,156]

当x≥8时,y=-10(x-9)2+160

当x=9时,y极大=160                                                                                           10分

综上知:当x=6时,总利润最大,最大值为195                                                     12分

20.⑴设M(x0,y0),则N(x0,-y0),P(x,y)

(x0≠-1且x0≠3)

BN:y=   ②

联立①②  ∴                                                                                        4分

∵点M(xo,yo)在圆⊙O上,代入圆的方程:

整理:y2=-2(x+1)  (x<-1)                                                                             6分

⑵由

设S(x1、y1),T(x2、y2),ST的中点坐标(x0、y0)

则x1+x2=-(3+)

x1x2                                                                                                           8分

中点到直线的距离

故圆与x=-总相切.                                                                                         13分

⑵另解:∵y2=-2(x+1)知焦点坐标为(-,0)                                                   2分

顶点(-1,0),故准线x=-                                                                               4分

设S、T到准线的距离为d1,d2,ST的中点O',O'到x=-的距离为

又由抛物线定义:d1+d2=|ST|,∴

故以ST为直径的圆与x=-总相切                                                                      8分

21.解:⑴由,得

,有

    =

    =

又b12a1=2,                                                                               3分

                                                                                    4分

⑵证法1:(数学归纳法)

1°,当n=1时,a1=1,满足不等式                                                    5分

2°,假设n=k(k≥1,k∈N*)时结论成立

,那么

                                                                                                       7分

由1°,2°可知,n∈N*,都有成立                                                           9分

⑵证法2:由⑴知:                (可参照给分)

,∴

  ∵

  ∴

当n=1时,,综上

⑵证法3:

∴{an}为递减数列

当n=1时,an取最大值  ∴an≤1

由⑴中知  

综上可知

欲证:即证                                                                             11分

即ln(1+Tn)-Tn<0,构造函数f (x)=ln(1+x)-x

当x>0时,f ' (x)<0

∴函数y=f (x)在(0,+∞)内递减

∴f (x)在[0,+∞)内的最大值为f (0)=0

∴当x≥0时,ln(1+x)-x≤0

又∵Tn>0,∴ln(1+Tn)-Tn<0

∴不等式成立                                                                                           14分