题目列表(包括答案和解析)
(1)
,
则
(4分)
(2)由(1)知
,则![]()
①当
时,
,令
或![]()
,![]()
在
上的值域为
(7分)
② 当
时,
a.若
,则
b.若
,则
在
上是单调减的![]()
在
上的值域为
c.若
则
在
上是单调增的![]()
在
上的值域为
(9分)
综上所述,当
时,
在
的值域为
当
时,
在
的值域为
(10分)
当
时,若![]()
![]()
时,
在
的值域为![]()
若![]()
![]()
时,
在
的值域为
(12分)
即 当
时,
在
的值域为![]()
当
时,
在
的值域为![]()
当
时,
在
的值域为
(1)
,
则
(4分)
(2)由(1)知
,则![]()
①当
时,
,令
或![]()
,![]()
在
上的值域为
(7分)
② 当
时,
a.若
,则
b.若
,则
在
上是单调减的![]()
在
上的值域为
c.若
则
在
上是单调增的![]()
在
上的值域为
(9分)
综上所述,当
时,
在
的值域为
当
时,
在
的值域为
(10分)
当
时,若![]()
![]()
时,
在
的值域为![]()
若![]()
![]()
时,
在
的值域为
(12分)
即 当
时,
在
的值域为![]()
当
时,
在
的值域为![]()
当
时,
在
的值域为
(1)
,
则
(4分)
(2)由(1)知
,则![]()
①当
时,
,令
或![]()
,![]()
在
上的值域为
(7分)
② 当
时,
a.若
,则
b.若
,则
在
上是单调减的![]()
在
上的值域为
c.若
则
在
上是单调增的![]()
在
上的值域为
(9分)
综上所述,当
时,
在
的值域为
当
时,
在
的值域为
(10分)
当
时,若![]()
![]()
时,
在
的值域为![]()
若![]()
![]()
时,
在
的值域为
(12分)
即 当
时,
在
的值域为![]()
当
时,
在
的值域为![]()
当
时,
在
的值域为
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
设函数
.
(I)求
的单调区间;
(II)当0<a<2时,求函数
在区间
上的最小值.
【解析】第一问定义域为真数大于零,得到
.
.
令
,则
,所以
或
,得到结论。
第二问中,
(
).
.
因为0<a<2,所以
,
.令
可得
.
对参数讨论的得到最值。
所以函数
在
上为减函数,在
上为增函数.
(I)定义域为
. ………………………1分
.
令
,则
,所以
或
. ……………………3分
因为定义域为
,所以
.
令
,则
,所以
.
因为定义域为
,所以
. ………………………5分
所以函数的单调递增区间为
,
单调递减区间为
.
………………………7分
(II)
(
).
.
因为0<a<2,所以
,
.令
可得
.…………9分
所以函数
在
上为减函数,在
上为增函数.
①当
,即
时,
在区间
上,
在
上为减函数,在
上为增函数.
所以
. ………………………10分
②当
,即
时,
在区间
上为减函数.
所以
.
综上所述,当
时,
;
当
时,![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com