B.如果., 查看更多

 

题目列表(包括答案和解析)

如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成”函数.给出下列函数:
①f(x)=sinx+cosx;
②f(x)=
2
(sinx+cosx);
③f(x)=sinx;
④f(x)=
2
sinx+
2

其中“互为生成”函数的是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)对于(I)中的函数f(x)有下列性质:“若x∈[a,b],则存在x0(a,b)使得
f(b)-f(a)
b-a
=f′(x0)”成立.利用这个性质证明x0唯一;
(Ⅲ)设A、B、C是函数f(x)=ln(1+ex)-x(x∈R)图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>

3、如果命题“p且q”为真命题,那么下列结论中正确的是(  )
①“p或q”为真命题;
②“p或q”为假命题;
③“非p或非q”为真命题;
④“非p或非q”为假命题.

查看答案和解析>>

如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)已知f(x)=ln(1+ex)-x是定义域在R上的减函数,且A、B、C是其图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>

如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=
2-
x2
2
在(0,2)内具有“Lg”性质,且中值ξ=
2
,f′(ξ)=-
2
2

③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=
x1+x2
2

其中你认为正确的所有命题序号是
 

查看答案和解析>>


同步练习册答案