(2) 是R上单调增函数 即是R上单调增函数, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”;若f(f(x))=x,则称x为f(x)的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f(f(x))=x}.

(1)求证

(2)若f(x)=ax2-1(a∈R,x∈R),且,求实数a的取值范围;

(3)若f(x)是R上的单调递增函数,x0是函数的稳定点,问x0是函数的不动点吗?若是,请证明你的结论;若不是,请说明理由.

查看答案和解析>>

已知一个函数f(x)满足:①定义域为R;②对任意的a,b∈R,若a+b=0,则f(a)+f(b)=0;③对任意的x∈R,若m<0,则f(x)>f(x+m),则f(x)可以是
x(答案不唯一,满足定义域为R,在定义域上单调递增的奇函数即可)
x(答案不唯一,满足定义域为R,在定义域上单调递增的奇函数即可)
(写出一个即可)

查看答案和解析>>

若整数m满足不等式,则称m为x的“亲密整数”,记作{x},即{x}=m,已知函数f(x)x-{x}.给出以下四个命题:
①函数y=f(x),x∈R是周期函数且其最小正周期为1;
②函数y=f(x),x∈R的图象关于点(k,0),k∈Z中心对称;
③函数y=f(x),x∈R在上单调递增;
④方程在[-2,2]上共有7个不相等的实数根.
其中正确命题的序号是    .(写出所有正确命题的序号).

查看答案和解析>>

若整数m满足不等式数学公式,则称m为x的“亲密整数”,记作{x},即{x}=m,已知函数f(x)x-{x}.给出以下四个命题:
①函数y=f(x),x∈R是周期函数且其最小正周期为1;
②函数y=f(x),x∈R的图象关于点(k,0),k∈Z中心对称;
③函数y=f(x),x∈R在数学公式上单调递增;
④方程数学公式在[-2,2]上共有7个不相等的实数根.
其中正确命题的序号是________.(写出所有正确命题的序号).

查看答案和解析>>


同步练习册答案