A. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2
3
,若∠CAP=30°,则⊙O的直径AB=
 

C.(极坐标系与参数方程选做题)若圆C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ为参数)
与直线x-y+m=0相切,则m=
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

A

D

B

A

A

C

C

D

D

12.提示:由于是中点,中,

所以,所以

二、填空题

13.    14.  52    15.      16. 18

16.提示:由可得,则,所以,所以,所以当且仅当时成立

三、解答题

17.解:由

      (3分)

             (6分)

(2)由(1)知      (8分)

   (10分)

                          (13分)

18.解:,    (2分)

,得     (4分)

                   (5分)

由于,于是有:

(1)当时,不等式的解集为      (8分)

(2)当时,不等式的解集为         (11分)

(3)当时,不等式的解集为             (13分)

19.解:(Ⅰ)由成等差数列,

,        (2分)

         (5分)

(Ⅱ) (7分)

         (9分)

             (11分)

     (12分)

20.解:(1)由题         (2分)

等差数列的公差       (4分)

     (5分)

(2)

      ①

    ②       (7分)

则②-①可得:

    (9分)

                     (11分)

                 (12分)

 

21.解:(1)由为奇函数,则,所以,得:   (3分)

(2)由(1)可知           (5分)

 

所以              (7分)

(3)由得:

          (8分)

  

下求:令, 由于

         (10分)

时,均递增,所以递增,

所以当取最大值为       所以           (12分)

22.解:(Ⅰ)     (1分)

时,

,即是等比数列.                 (3分)

 ∴;                          (4分)

(Ⅱ)由(Ⅰ)知,,若为等比数列,

 则有

,解得,  

再将代入得成立,

所以.                                    (8分)

(III)证明:由(Ⅱ)知,所以

,   

所以,      

从而

.                            (12分)

 


同步练习册答案