题目列表(包括答案和解析)
(本小题满分12分)二次函数
的图象经过三点
.![]()
(1)求函数
的解析式(2)求函数
在区间
上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:
;
(本小题满分12分)已知函数
,其中a为常数.
(Ⅰ)若当
恒成立,求a的取值范围;
(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为
,乙投篮命中的概率为![]()
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知
是椭圆
的两个焦点,O为坐标原点,点
在椭圆上,且
,圆O是以
为直径的圆,直线
与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当
时,求弦长|AB|的取值范围.
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
C
B
A
D
B
A
A
C
C
D
D
12.提示:由于
是中点,
中,
,
,
所以
,所以
二、填空题
13.
14. 52 15.
16. 18
16.提示:由
可得
,则
,所以
,所以
,
,所以
;
当且仅当
时成立
三、解答题
17.解:由
(3分)
(6分)
(2)由(1)知
(8分)
(10分)


(13分)
18.解:
, (2分)
由
,得
(4分)
则
(5分)
由于
,于是有:
(1)当
时,不等式的解集为
(8分)
(2)当
时,不等式的解集为
(11分)
(3)当
时,不等式的解集为
(13分)
19.解:(Ⅰ)由
成等差数列,
得
, (2分)
即
(5分)
(Ⅱ)
(7分)
∵
(9分)
∵
(11分)
∴
(12分)
20.解:(1)由题
,
(2分)
等差数列的公差
(4分)
(5分)
(2)
,
令
①
② (7分)
则②-①可得:
(9分)

而
(11分)
(12分)
21.解:(1)由
为奇函数,则
,所以
,得:
(3分)
(2)由(1)可知
(5分)
又
,

所以
(7分)
(3)由
得:
则
(8分)
令


下求
:令
, 由于

则

(10分)
当
时,
与
均递增,所以
递增,
所以当
时
取最大值为
所以
(12分)
22.解:(Ⅰ)
∴
(1分)
当
时,
,即
是等比数列.
(3分)
∴
; (4分)
(Ⅱ)由(Ⅰ)知,
,若
为等比数列,
则有
而
故
,解得
,
再将
代入得
成立,
所以
. (8分)
(III)证明:由(Ⅱ)知
,所以

,
由
得
所以
,
从而

.
(12分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com