⑴当.证明:顶点..不在同一条直线上, 查看更多

 

题目列表(包括答案和解析)

如图,在直角坐标系xOy中,有一组对角线长为an的正方形AnBnCnDn(n=1,2,…),其对角线BnDn依次放置在x轴上(相邻顶点重合).设{an}是首项为a,公差为d(d>0)的等差数列,点B1的坐标为(d,0).

(1)当a=8,d=4时,证明:顶点A1、A2、A3不在同一条直线上;

(2)在(1)的条件下,证明:所有顶点An均落在抛物线y2=2x上;

(3)为使所有顶点An均落在抛物线y2=2px(p>0)上,求a与d之间所应满足的关系式.

查看答案和解析>>

如图,在直角坐标系xOy中,有一组对角线长为an的正方形AnBnCnDn(n=1,2,…),其对角线BnDn依次放置在x轴上(相邻顶点重合).设{an}是首项为a,公差为d(d>0)的等差数列,点B1的坐标为(d,0).
(1)当a=8,d=4时,证明:顶点A1、A2、A3不在同一条直线上;
(2)在(1)的条件下,证明:所有顶点An均落在抛物线y2=2x上;
(3)为使所有顶点An均落在抛物线y2=2px(p>0)上,求a与d之间所应满足的关系式.

查看答案和解析>>

(2009•上海)如图,在直角坐标系xOy中,有一组对角线长为an的正方形AnBnCnDn(n=1,2,…),其对角线BnDn依次放置在x轴上(相邻顶点重合).设{an}是首项为a,公差为d(d>0)的等差数列,点B1的坐标为(d,0).
(1)当a=8,d=4时,证明:顶点A1、A2、A3不在同一条直线上;
(2)在(1)的条件下,证明:所有顶点An均落在抛物线y2=2x上;
(3)为使所有顶点An均落在抛物线y2=2px(p>0)上,求a与d之间所应满足的关系式.

查看答案和解析>>

(2009•崇明县二模)设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点坐标为A(0,-
2
),且其右焦点到直线y-x-2
2
=0
的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(
1
2
,0
),求证:点M的所有“相关弦”的中点在同一条直线上;
(3)对于问题(2),如果点M坐标为M(t,0),当t满足什么条件时,点M(t,0)存在无穷多条“相关弦”,并判断点M的所有“相关弦”的中点是否在同一条直线上.

查看答案和解析>>

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;

(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.

(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

 

查看答案和解析>>

题号

1

2

3

4

5

6

7

8

9

10

答案

A

A

A

A

B

B

B

C

C

A

11.  -3      12.    3       13.     14.

15.  4        (5,1,3) 

16.⑴

  

       =

由于  

时   

时     

此时  

综上取最大值时,  

17.⑴

因为函数的图象在点处的切线与直线平行,所以,即。                      (文2分)

过点  (文4分,理3分)

⑵由⑴知,

,则

易知的单调递增区间为,单调递减区间为。 

 (文6分,理5分)。

时,的最大值为,最小值为

时,的最大值为,最小值为;  (文10分,理7分)

时,的最大值为,最小值为; (文12分,理8分)

⑶因为为连续函数,所以=

由⑵得,则

,(理10分)

。     (理12分)

18.⑴,且平面平面

平面

平面

为二面角的平面角。   (4分)

J是等边三角形,,即二面角的大小为。   (5分)

⑵(理)设的中点为的中点为,连结

,①

,且平面平面

平面。     (7分)

平面

。            ②

由①、②知

,得四边形为平行四边形,

平面,又平面

平面平面。   

19.⑴三人恰好买到同一只股票的概率。  (文4分,理3分)

⑵解法一  三人中恰好有两个买到同一只股票的概率。    (文9分,理7分)

由⑴知,三人恰好买到同一只股票的概率为,所以三人中至少有两人买到同一只股票的概率。  (文12分,理9分)

解法二  。  (文12分,理9分)

⑶(只理科做)每股今天获利钱数的分布列为:

2

0

-1

0.5

0.2

0.3

所以,1000股在今日交易中获利钱数的数学期望为

1000   (理12分)

20.⑴由题意可知,

    (3分)

顶点不在同一条直线上。      (4分)

⑵由题意可知,顶点横、纵坐标分别是

消去,可得。     (12分)

为使得所有顶点均落在抛物线上,则有解之,得    (14分)

所以应满足的关系式是:。      (16分)

解法二    点的坐标满足

 在抛物线上,

   

又点的坐标满足且点也在抛物线上,

把点代入抛物线方程,解得。(13分)

因此,,抛物线方程为

所有顶点均落在抛物线

所应满足的关系式是:

21.⑴

由题意,得,    (2分)

⑵由⑴,得


同步练习册答案